精英家教网 > 高中数学 > 题目详情

函数f(x)是一个偶函数,g(x)是一个奇函数,且数学公式,则f(x)解析式为________.


分析:将-x代入已知解析式,结合奇偶性的定义f(-x)=f(x),g(-x)=-g(x),整理可得f(x)与g(x)的又一关系式,与已知解析式联立解方程即可.
解答:∵f(x)是一个偶函数,g(x)是一个奇函数,
∴f(-x)=f(x),g(-x)=-g(x),
①,
②,
①②联立,解得f(x)=
故答案为:
点评:本题考查了函数奇偶性的定义,注意将-x代入已知解析式从而构造出f(x)与g(x)的又一关系的方法的应用,同时考查了学生的方程思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)证明f(x)为减函数;若函数f(x)在[-3,3]上总有f(x)≤6成立,试确定f(1)应满足的条件;(3)解关于x的不等式
1
n
f(ax2)-f(x)>
1
n
f(a2x)-f(a)
,(n是一个给定的自然数,a<0)

查看答案和解析>>

科目:高中数学 来源: 题型:

13、观察下列各式:①(x3)′=3x2;②(sinx)′=cosx;③(2x-2-x)′=2x+2-x;④(xcosx)′=cosx-xsinx根据其中函数f(x)及其导函数f′(x)的奇偶性,运用归纳推理可得到的一个命题是:
奇函数的导函数是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域D关于原点对称,0∈D,且存在常数a>0,使f(a)=1,又f(x1-x2)=
f(x1)-f(x2)1+f(x1)f(x2)

(1)写出f(x)的一个函数解析式,并说明其符合题设条件;
(2)判断并证明函数f(x)的奇偶性;
(3)若存在正常数T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)对于x∈D都成立,则都称f(x)是周期函数,T为周期;试问f(x)是不是周期函数?若是,则求出它的一个周期T;若不是,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
x2+a
.请完成以下任务:
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
-log2
1+x
1-x

(1)试求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)已知a是方程f(x)=0的一个实数解,求证:|a|>
1
2

查看答案和解析>>

同步练习册答案