分析 利用三角形的面积计算公式可得$\frac{1}{2}$×$\frac{\sqrt{3}}{6}$a2=$\frac{1}{2}$bcsinA即a2=2$\sqrt{3}$bcsinA,利用余弦定理及已知可得$\frac{c}{b}$+$\frac{b}{c}$=4sin(A+$\frac{π}{6}$)≤4,从而可解得A的值.
解答 解:∵$\frac{1}{2}$×$\frac{\sqrt{3}}{6}$a2=$\frac{1}{2}$bcsinA,
∴a2=2$\sqrt{3}$bcsinA.
∵cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$,
∴b2+c2=a2+2bccosA=2$\sqrt{3}$bcsinA+2bccosA
∴$\frac{c}{b}$+$\frac{b}{c}$=2$\sqrt{3}$sinA+2cosA=4sin(A+$\frac{π}{6}$)≤4,
∴$\frac{c}{b}$+$\frac{b}{c}$的最大值是4时有A+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z
∴可解得:A=2kπ+$\frac{π}{3}$,k∈Z
∵0<A<π
∴A=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$
点评 本题考查了三角形的面积计算公式、余弦定理、两角和差的正弦计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $({-∞\;,\;-\frac{2}{3}}]$ | B. | $[{\frac{2}{3}\;,\;+∞})$ | C. | $({-∞\;,\;-\frac{1}{2}}]$ | D. | $({-∞\;,\;\frac{1}{2}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①③ | B. | ①② | C. | ②③ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com