精英家教网 > 高中数学 > 题目详情

【题目】下列说法中正确的是(

A.先把高二年级的2000名学生编号:12000,再从编号为150的学生中随机抽取1名学生,其编号为,然后抽取编号为,…的学生,这种抽样方法是分层抽样法

B.线性回归直线不一定过样本中心

C.若一个回归直线方程为,则变量每增加一个单位时,平均增加3个单位

D.若一组数据248的平均数是5,则该组数据的方差也是5

【答案】D

【解析】

根据系统抽样,样本中心点,回归直线,平均数,方差,对各选项逐一判断即可.

对于A:根据个体数目较多,且没有明显的差异,抽取样本间隔相等,知这种抽样方法是系统抽样法,故A错误;

对于B:线性回归直线一定过样本中心,故B错误;

对于C:对回归直线,当变量每增加一个单位时,平均减少3个单位,故C错误;

对于D:一组数据248的平均数是5

所以该组数据的方差为故D正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入,则输出的等于( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若,求的取值范围;

(2)若的图像与轴围成的封闭图形面积为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m是实数,关于x的方程Ex2mx+2m+1)=0

1)若m2,求方程E在复数范围内的解;

2)若方程E有两个虚数根x1x2,且满足|x1x2|2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线Γ的方程为y24x,点P的坐标为(11).

1)过点P,斜率为﹣1的直线l交抛物线ΓUV两点,求线段UV的长;

2)设Q是抛物线Γ上的动点,R是线段PQ上的一点,满足2,求动点R的轨迹方程;

3)设ABCD是抛物线Γ的两条经过点P的动弦,满足ABCD.点MN分别是弦ABCD的中点,是否存在一个定点T,使得MNT三点总是共线?若存在,求出点T的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥PABCD的底面ABCD是矩形,PA⊥底面ABCD,点EF分别是棱PCPD的中点,则

①棱ABPD所在直线垂直;

②平面PBC与平面ABCD垂直;

③△PCD的面积大于△PAB的面积;

④直线AE与直线BF是异面直线.

以上结论正确的是________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为,右顶点为A,上顶点为B,且满足向量

(1),求椭圆的标准方程;

(2)为椭圆上异于顶点的点,以线段PB为直径的圆经过F1,问是否存在过F2的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对任意,都有.

讨论的单调性;

存在三个不同的零点时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数常数)

1)当时,求函数上的单调区间;

2)当时,成立,求证:

查看答案和解析>>

同步练习册答案