精英家教网 > 高中数学 > 题目详情
2.将正方形ABCD沿对角线AC折叠成空间四边形,使折叠成的二面角B-AC-D=60°,若此时BD两点的距离为2,则此空间四边形ABCD的外接球体积是(  )
A.$\frac{4π}{3}$B.$\frac{8π}{3}$C.$\frac{16π}{3}$D.$\frac{32π}{3}$

分析 先确定球心的位置,然后求出球的半径,再解出外接球的体积.

解答 解:由题意知,球心到四个顶点的距离相等,则球心为对角线AC的中点,
因为折叠成的二面角B-AC-D=60°,BD两点的距离为2,
所以球的半径为2,
所以V=$\frac{4}{3}$π×23=$\frac{32π}{3}$.
故选:D.

点评 本题考查球的内接多面体,球的体积,外接球的半径与折叠二面角的大小没有关系,是解题的关键,考查学生发现问题解决问题的能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知sinθ-cosθ=$\frac{1}{2}$,θ∈(0,π),则tanθ=$\frac{4+\sqrt{7}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在距A城市45千米的B地发现金属矿,过A有一直线铁路AD.欲运物资于A,B之间,拟在铁路线AD间的某一点C处筑一公路到B. 现测得BD=27$\sqrt{2}$千米,∠BDA=45°(如图).已知公路运费是铁路运费的2倍,设铁路运费为每千米1个单位,总运费为y.为了求总运费y的最小值,现提供两种方案:方案一:设AC=x千米;方案二设∠BCD=θ.
(1)试将y分别表示为x、θ的函数关系式y=f(x)、y=g(θ);
(2)请选择一种方案,求出总运费y的最小值,并指出C点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x,y满足约束条件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为4,则ab的取值范围是(  )
A.(0,4)B.(0,4]C.[4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若sin(π+α)+cos(π-α)=-$\frac{1}{5}$,则sin2α=(  )
A.-$\frac{22}{25}$B.-$\frac{24}{25}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.f(x)=$\sqrt{3}$sinωx+cosωx,x∈R,f(α)=-2,f(β)=0,|α-β|的最小值为$\frac{3π}{4}$,则正数ω=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=3,|$\overrightarrow b$|=2$\sqrt{3}$,且$\overrightarrow a$⊥($\overrightarrow a$+$\overrightarrow b$),则$\overrightarrow b$在$\overrightarrow a$方向上的投影为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C的对应边分别为a,b,c,已知$\overrightarrow{m}$=(3,2sinA),$\overrightarrow{n}$=(sinA,1+cosA)满足$\overrightarrow{m}$∥$\overrightarrow{n}$,且a=$\sqrt{7}$(c-b).
(Ⅰ)求∠A的值;
(Ⅱ)求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.观察下列不等式:①$\frac{1}{{\sqrt{3}}}$<1;②$\frac{1}{{\sqrt{3}}}+\frac{1}{{\sqrt{6}}}<\sqrt{2}$;③$\frac{1}{{\sqrt{3}}}+\frac{1}{{\sqrt{6}}}+\frac{1}{{\sqrt{12}}}<\sqrt{3}$…,则第5个等式为$\frac{1}{{\sqrt{3}}}+\frac{1}{{\sqrt{6}}}+\frac{1}{{\sqrt{12}}}+\frac{1}{{\sqrt{24}}}+\frac{1}{{\sqrt{48}}}<\sqrt{5}$.

查看答案和解析>>

同步练习册答案