精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线Cx22pyp0),直线lCAB两点,且AB两点与原点不重合,点M12)为线段AB的中点.

1)若直线l的斜率为1,求抛物线C的方程;

2)分别过AB两点作抛物线C的切线,若两条切线交于点S,证明点S在一条定直线上.

【答案】(1)x22y(2)证明见解析

【解析】

1)设直线的方程为,代入抛物线方程,消去,设,运用韦达定理,以及中点坐标公式,可得,即可得到所求抛物线方程;

2)求得的导数,可得抛物线在处的切线的斜率,由点斜式方程和点满足抛物线方程,可得在处的切线方程,联立两切线方程,相加,结合中点坐标公式,即可得到所求点所在的定直线方程.

解:(1)设直线的方程为,代入抛物线

可得

,则

为线段的中点,可得,即

则抛物线的方程为

2)证明:设,点为线段的中点,

可得

的导数为,可得抛物线在处的切线斜率为,切线方程为

,可得,①

同理可得,②

②可得

即为,即

可得交点在一条定直线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是(  )

A.2017年第一季度GDP增速由高到低排位第5的是浙江省.

B.与去年同期相比,2017年第一季度的GDP总量实现了增长.

C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1

D.去年同期河南省的GDP总量不超过4000亿元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆在圆外部且与圆相切,同时还在圆内部与圆相切.

1)求动圆圆心的轨迹方程;

2)记(1)中求出的轨迹为轴的两个交点分别为上异于的动点,又直线轴交于点,直线分别交直线两点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通项公式;

(2)若T3=21,求S3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为提高学生的身体素质,实施每天一节体育课,并定期对学生进行体能测验在一次体能测验中,某班甲、乙、丙三位同学的成绩(单位:分)及班内排名如表(假定成绩均为整数)现从该班测验成绩为9495的同学中随机抽取两位,这两位同学成绩相同的概率是(

成绩/

班内排名

95

9

94

11

93

14

A.0.2B.0.4C.0.5D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数fx)=2lnxax2+3x,其中aR

1)若f1)=2,求函数fx)的最大值;

2)若a=﹣1,正实数x1x2满足fx1+fx2)=0,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为正整数,各项均为正整数的数列定义如下:

(1)若,写出

(2)求证:数列单调递增的充要条件是为偶数;

(3)若为奇数,是否存在满足?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形为等腰梯形,为正方形,平面平面.

(1)求证:平面平面

(2)为线段上一动点,求与平面所成角正弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的各项都是正数,其前项和为,且满足:,其中,常数

1)求证:是一个定值;

2)若数列是一个周期数列(存在正整数,使得对任意,都有成立,则称为周期数列,为它的一个周期),求该数列的最小周期;

3)若数列是各项均为有理数的等差数列,),问:数列中的所有项是否都是数列中的项?若是,请说明理由;若不是,请举出反例.

查看答案和解析>>

同步练习册答案