【题目】已知抛物线C:x2=2py(p>0),直线l交C于A,B两点,且A,B两点与原点不重合,点M(1,2)为线段AB的中点.
(1)若直线l的斜率为1,求抛物线C的方程;
(2)分别过A,B两点作抛物线C的切线,若两条切线交于点S,证明点S在一条定直线上.
【答案】(1)x2=2y(2)证明见解析
【解析】
(1)设直线的方程为,代入抛物线方程,消去,设,,,,运用韦达定理,以及中点坐标公式,可得,即可得到所求抛物线方程;
(2)求得的导数,可得抛物线在,处的切线的斜率,由点斜式方程和点,满足抛物线方程,可得在,处的切线方程,联立两切线方程,相加,结合中点坐标公式,即可得到所求点所在的定直线方程.
解:(1)设直线的方程为,代入抛物线,
可得,
设,,则,
点为线段的中点,可得,即,
则抛物线的方程为;
(2)证明:设,,点为线段的中点,
可得,,
由的导数为,可得抛物线在处的切线斜率为,切线方程为,
由,可得,①
同理可得,②
①②可得,
即为,即.
可得交点在一条定直线上.
科目:高中数学 来源: 题型:
【题目】如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是( )
A.2017年第一季度GDP增速由高到低排位第5的是浙江省.
B.与去年同期相比,2017年第一季度的GDP总量实现了增长.
C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个
D.去年同期河南省的GDP总量不超过4000亿元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆在圆:外部且与圆相切,同时还在圆:内部与圆相切.
(1)求动圆圆心的轨迹方程;
(2)记(1)中求出的轨迹为,与轴的两个交点分别为、,是上异于、的动点,又直线与轴交于点,直线、分别交直线于、两点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为提高学生的身体素质,实施“每天一节体育课”,并定期对学生进行体能测验在一次体能测验中,某班甲、乙、丙三位同学的成绩(单位:分)及班内排名如表(假定成绩均为整数)现从该班测验成绩为94和95的同学中随机抽取两位,这两位同学成绩相同的概率是( )
成绩/分 | 班内排名 | |
甲 | 95 | 9 |
乙 | 94 | 11 |
丙 | 93 | 14 |
A.0.2B.0.4C.0.5D.0.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:函数f(x)=2lnx﹣ax2+3x,其中a∈R.
(1)若f(1)=2,求函数f(x)的最大值;
(2)若a=﹣1,正实数x1,x2满足f(x1)+f(x2)=0,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为正整数,各项均为正整数的数列定义如下: ,
(1)若,写出,,;
(2)求证:数列单调递增的充要条件是为偶数;
(3)若为奇数,是否存在满足?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列的各项都是正数,其前项和为,且满足:,,其中,常数.
(1)求证:是一个定值;
(2)若数列是一个周期数列(存在正整数,使得对任意,都有成立,则称为周期数列,为它的一个周期),求该数列的最小周期;
(3)若数列是各项均为有理数的等差数列,(),问:数列中的所有项是否都是数列中的项?若是,请说明理由;若不是,请举出反例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com