精英家教网 > 高中数学 > 题目详情

【题目】某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用(万元)和宿舍与工厂的距离的关系为: .为了交通方便,工厂与宿舍之间还要修一条简易便道,已知修路每公里成本为万元,工厂一次性补贴职工交通费万元.为建造宿舍修路费用与给职工的补贴之和.

的表达式

宿舍应建在离工厂多远处,可使总费用最小,并求最小值.

【答案】见解析

【解析】试题分析:(1利用题意提取有关知识,利用函数模型建立表达式;(2利用导数研究函数的单调性,进而求出函数的最小值.

试题解析:

整理得

所以上单调递减,在上单调递增

故当时, 取得最小值

答:⑴

宿舍应建在离工厂处,可使总费用最小,最小值为万元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于下列命题:

①若是第一象限角,且,则

②函数是偶函数;

③函数的一个对称中心是

④函数上是增函数,

所有正确命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)=2sin(π-x)sin x-(sin x-cos x)2.

(1)f(x)的单调递增区间;

(2)y=f(x)的图象上所有点的横坐标伸长到原来的2(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,g的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用(万元)和宿舍与工厂的距离的关系为: .为了交通方便,工厂与宿舍之间还要修一条简易便道,已知修路每公里成本为万元,工厂一次性补贴职工交通费万元.为建造宿舍修路费用与给职工的补贴之和.

的表达式

宿舍应建在离工厂多远处,可使总费用最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小值为

⑴设,求证: 上单调递增;

⑵求证:

⑶求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).

(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得 ,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形是全等的等腰梯形,其中,且,点的中点,点的中点.

(I)请在图中所给的点中找出两个点,使得这两个点所在直线与平面垂直,并给出证明

(II)求二面角的余弦值;

(III)在线段上是否存在点,使得平面?如果存在,求出的长度,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数同时满足以下三个条件:

①对任意的,总有

③若,则有成立,则称友谊函数”.

)若已知友谊函数,求的值.

)分别判断函数在区间上是否为友谊函数,并给出理由.

)已知友谊函数,且,求证:

查看答案和解析>>

同步练习册答案