精英家教网 > 高中数学 > 题目详情
点P在椭圆
x2
25
+
y2
9
=1
上,F1,F2为两个焦点,若△F1PF2为直角三角形,这样的点P共有(  )
A.4个B.5个C.6个D.8个
∵椭圆方程是
x2
25
+
y2
9
=1

∴a=5,b=3,可得c=
25-9
=4
因此椭圆的焦点F1(-4,0)和F2(4,0),
由c>b可得以F1F2为直径的圆和椭圆
x2
25
+
y2
9
=1
有4个交点,
由直径所对的圆周角为直角,可得当P与这些交点重合时,
△F1PF2为直角三角形;
当直角△F1PF2以F1F2为一条直角边时,
根据椭圆的对称性,可得存在四个满足条件的直角△F1PF2
综上所述,能使△F1PF2为直角三角形的点P共有8个
故选:D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知△ABC的两个顶点B(-3,0),C(3,0)且三边AC、BC、AB的长成等差数列,求点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求适合下列条件的椭圆标准方程:
(1)焦点在y上,且经过两点(0,2)和(1,0);
(2)经过点(
6
3
3
)
和点(
2
2
3
,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知实数4,m,9构成一个等比数列,则圆锥曲线x2+
y2
m
=1
的离心率为(  )
A.
30
6
B.
7
C.
30
6
7
D.
5
6
或7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
25
+
y2
m
=1
的一个焦点坐标为(3,0),那么m的值为(  )
A.-16B.-4C.16D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,从椭圆
x2
a2
+
y2
b2
=1(a>b>o)上一点P向x轴作垂线,垂足恰好为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且ABOP,则椭圆的离心率e=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,P是椭圆
x2
25
+
y2
16
=1(xy≠0)
上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且
F2M
MP
=0
.则|OM|的取值范围______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2(k1k2≠0),若椭圆的离心率为
3
2
,则|k1|+|k2|的最小值为(  )
A.1B.
2
C.
3
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆x2+my2=1(0<m<1)的离心率为
2
2
,则它的长轴长是______.

查看答案和解析>>

同步练习册答案