精英家教网 > 高中数学 > 题目详情
13.已知{an}是等差数列,满足a1=3,a4=12,等比数列{bn}满足b1=4,b4=20.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.

分析 (1)由等差数列的通项公式求出公差,由此能求出数列{an}的通项公式;由等比数列{bn}通项公式求出公比q,由此能求出数列{bn}的通项公式.
(2)由等比数列{bn}的首项和公比能求出数列{bn}的前n项和.

解答 解:(1)∵{an}是等差数列,满足a1=3,a4=12,
∴3+3d=12,解得d=3,
∴an=3+(n-1)×3=3n.
∵等比数列{bn}满足b1=4,b4=20,
∴4q3=20,解得q=$\root{3}{5}$,
∴bn=4×($\root{3}{5}$)n-1
(2)∵等比数列{bn}中,${b}_{1}=4,q=\root{3}{5}$,
∴数列{bn}的前n项和Sn=$\frac{4[1-(\root{3}{5})^{n}]}{1-\root{3}{5}}$=$\frac{4(1{-5}^{\frac{n}{3}})}{1-\root{3}{5}}$.

点评 本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知直线m:2x-y+2=0,n:ax-(a-1)y+1=0互相垂直,则a的值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}(x<1)}\\{lo{g}_{4}x(x≥1)}\end{array}\right.$.
(1)求f(0),f(2),f(f(3))的值;
(2)求不等式f(x)≤2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在直角坐标系中,一动点从点A(1,0)出发,沿单位圆(圆心在坐标原点半径为1的圆)圆周按逆时针方向运动$\frac{2}{3}$π弧长,到达点B,则点B的坐标为(  )
A.(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)B.(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)C.(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.椭圆$\frac{4}{25}{x^2}+\frac{y^2}{5}$=1过右焦点有n条弦的长度成等差数列,最小弦长为数列的首项a1,最大弦长为an,若公差为d$∈[\frac{1}{6},\frac{1}{3}],那么n$的取值集合为(  )
A.{4,5,6,7}B.{4,5,6}C.{3,4,5,6}D.{3,4,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义域为R的函数f(x)在区间(4,+∞)上为增函数,且函数y=f(x+4)为偶函数,则(  )
A.f(3)<f(6)B.f(3)<f(5)C.f(2)<f(3)D.f(2)<f(5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{x+b}{{1+{x^2}}}$是定义在(-1,1)上的奇函数,
(1)求函数f(x)的解析式;
(2)用单调性的定义证明函数f(x)在(-1,1)上是增函数;
(3)解不等式 f(x2-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一项实验中获得的一组关于变量y,t之间的数据整理后得到如图所示的散点图.下列函数中可以
近视刻画y与t之间关系的最佳选择是(  )
A.y=atB.y=logatC.y=at3D.y=a$\sqrt{t}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆O:x2+y2=1与圆C:x2+y2-6x-8y+m=0相切于M点,求以M为圆心,且与圆C的半径相等的圆的标准方程.

查看答案和解析>>

同步练习册答案