精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左焦点为,短轴的两个端点分别为A,B,且满足:,且椭圆经过点

(1)求椭圆的标准方程;

(2)设过点M的动直线(与X轴不重合)与椭圆C相交于P,Q两点,在X轴上是否存在一定点T,无论直线如何转动,点T始终在以PQ为直径的圆上?若有,求点T的坐标,若无,说明理由。

【答案】(1);(2)(2,0)

【解析】

1)由可知,,根据椭圆过点,即可求出,由此得到椭圆的标准方程;

2)分别讨论直线斜率存在与不存在两种情况,当斜率不存在时,联立直线与椭圆方程,解出两点坐标,利用向量垂直的条件可得点,当斜率存在时,设出直线的点斜式,与椭圆联立方程,得到关于的一元二次方程,写出根与系数的关系,代入中进行化简,即可得到答案。

(1)由可知,,又椭圆经过点,则,由于在椭圆中 ,所以, 解得=2,所求椭圆方程为

(2) 设 ,则

①当直线斜率不存在时,则直线的方程为:

联立方程 ,解得:,故点

由于点始终在以为直径的圆上,则,解得:,故点

②当直线斜率存在时,设直线的方程为:,代入椭圆方程中消去,

由于点始终在以为直径的圆上,

解得: ,故点

综上所述;当时满足条件。所以定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是各项均为正数的等比数列,.

1)求的通项公式;

2)设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为正方形,.

(1)证明:面

(2)若与底面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当函数上的最大值为3时,求的值;

(2)在(1)的条件下,若对任意的,函数的图像与直线有且仅有两个不同的交点,试确定的值.并求函数上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求AM与平面A1MD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上方程f(x)-mx-m=0有两个不同的实根,则实数m的取值范围是()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,设函数,若函数上恰有两个不同的零点,则的值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当的极值;

(2)若函数在[1,3]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数).

1)分别求出曲线和直线的直角坐标方程;

2)若点在曲线上,且到直线的距离为1,求满足这样条件的点的个数.

查看答案和解析>>

同步练习册答案