·ÖÎö £¨1£©ÓÉÌâÒâÖª$b=\sqrt{2}$£¬$\frac{b}{a}$=$\frac{c}{b}$=$\frac{\sqrt{2}}{2}$£¬´Ó¶øÇóèÑÛÇúÏߦ£µÄ·½³Ì£»
£¨2£©Éè½»µãC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬´Ó¶ø¿ÉµÃ${x_0}=\frac{{{x_1}+{x_2}}}{2}£¬{y_0}=\frac{{{y_1}+{y_2}}}{2}$£¬ÁªÁ¢·½³Ì»¯¼ò¿ÉµÃ$k•{k_{OM}}=-\frac{1}{2}$£¬k•kON=-2£»´Ó¶ø½âµÃ£»
£¨3£©ÉèÖ±ÏßlµÄ·½³ÌΪ$y=\sqrt{2}x+m$£¬ÁªÁ¢·½³Ì»¯¼ò$£¨{{b^2}+2{c^2}}£©{x^2}+2\sqrt{2}m{c^2}x+{m^2}{c^2}-{b^2}{c^2}=0$£¬´Ó¶ø¿ÉµÃ${l_1}£ºy=\sqrt{2}x+\sqrt{{b^2}+2{c^2}}$£¬Í¬Àí¿ÉµÃ${l_2}£ºy=\sqrt{2}x-\sqrt{{b^2}+2{a^2}}$£¬´Ó¶øÀûÓÃÁ½Æ½ÐÐÏß¼ä¾àÀë±íʾÈý½ÇÐεĸߣ¬ÔÙÇó$|{AB}|=\frac{{2\sqrt{3}ab\sqrt{2{a^2}-2{c^2}}}}{{{b^2}+2{a^2}}}$£»´Ó¶øÇó×î´óÃæ»ý£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâÖª£¬$b=\sqrt{2}$£¬$\frac{b}{a}$=$\frac{c}{b}$=$\frac{\sqrt{2}}{2}$£¬
¡àa=2£¬c=1£¬
¡à${T_1}£º\frac{x^2}{4}+\frac{y^2}{2}=1$£¬¡à${T_2}£º\frac{y^2}{2}+{x^2}=1$£»
£¨2£©Ö¤Ã÷£ºÉèбÂÊΪkµÄÖ±Ïß½»ÍÖÔ²T1ÓÚµãC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ï߶ÎCDÖеãM£¨x0£¬y0£©£¬
¡à${x_0}=\frac{{{x_1}+{x_2}}}{2}£¬{y_0}=\frac{{{y_1}+{y_2}}}{2}$£¬
ÓÉ$\left\{\begin{array}{l}\frac{{{x_1}^2}}{4}+\frac{{{y_1}^2}}{2}=1\\ \frac{{{x_2}^2}}{4}+\frac{{{y_2}^2}}{2}=1\end{array}\right.$µÃ$\frac{{£¨{{x_1}-{x_2}}£©£¨{{x_1}+{x_2}}£©}}{4}+\frac{{£¨{{y_1}-{y_2}}£©£¨{{y_1}+{y_2}}£©}}{2}=0$£¬
¡ßk´æÔÚÇÒk¡Ù0£¬
¡àx1¡Ùx2£¬ÇÒx0¡Ù0£¬
¡à$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}•\frac{y_0}{x_0}=-\frac{1}{2}$£¬
¼´$k•{k_{OM}}=-\frac{1}{2}$£»
ͬÀí£¬k•kON=-2£»
¡à$\frac{{{k_{OM}}}}{{{k_{ON}}}}=\frac{1}{4}$£»
£¨3£©ÉèÖ±ÏßlµÄ·½³ÌΪ$y=\sqrt{2}x+m$£¬
ÁªÁ¢·½³ÌµÃ$\left\{\begin{array}{l}y=\sqrt{2}x+m\\ \frac{y^2}{b^2}+\frac{x^2}{c^2}=1\end{array}\right.$£¬
»¯¼òµÃ£¬$£¨{{b^2}+2{c^2}}£©{x^2}+2\sqrt{2}m{c^2}x+{m^2}{c^2}-{b^2}{c^2}=0$£¬
ÓÉ¡÷=0»¯¼òµÃm2=b2+2c2£¬
${l_1}£ºy=\sqrt{2}x+\sqrt{{b^2}+2{c^2}}$£¬
ÁªÁ¢·½³ÌµÃ$\left\{\begin{array}{l}y=\sqrt{2}x+m\\ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\end{array}\right.$£¬
»¯¼òµÃ$£¨{{b^2}+2{a^2}}£©{x^2}+2\sqrt{2}m{a^2}x+{m^2}{a^2}-{b^2}{a^2}=0$£¬
ÓÉ¡÷=0µÃm2=b2+2a2£¬
${l_2}£ºy=\sqrt{2}x-\sqrt{{b^2}+2{a^2}}$£¬
Á½Æ½ÐÐÏß¼ä¾àÀ룺$d=\frac{{\sqrt{{b^2}+2{c^2}}+\sqrt{{b^2}+2{a^2}}}}{{\sqrt{3}}}$£¬
¡à$|{AB}|=\frac{{2\sqrt{3}ab\sqrt{2{a^2}-2{c^2}}}}{{{b^2}+2{a^2}}}$£»
¡à¡÷ABNµÄÃæ»ý×î´óֵΪ$S=\frac{1}{2}|{AB}|•d=\frac{{ab\sqrt{2{a^2}-2{c^2}}£¨{\sqrt{{b^2}+2{c^2}}+\sqrt{{b^2}+2{a^2}}}£©}}{{{b^2}+2{a^2}}}$£®
µãÆÀ ±¾Ì⿼²éÁËѧÉúµÄ»¯¼òÔËËãµÄÄÜÁ¦¼°ÍÖÔ²ÓëÖ±ÏßµÄλÖùØϵµÄÅжÏÓëÓ¦Óã®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨2£¬+¡Þ£© | B£® | £¨0£¬2£© | C£® | £¨0£¬4£© | D£® | £¨4£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com