2£®Èçͼ£¬ÇúÏߦ£ÓÉÁ½¸öÍÖÔ²T1£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$ºÍÍÖÔ²T2£º$\frac{y^2}{b^2}+\frac{x^2}{c^2}=1£¨{b£¾c£¾0}£©$×é³É£¬µ±a£¬b£¬c³ÉµÈ±ÈÊýÁÐʱ£¬³ÆÇúÏߦ£Îª¡°Ã¨ÑÛÇúÏß¡±£®
£¨1£©ÈôèÑÛÇúÏߦ£¹ýµã$M£¨{0£¬-\sqrt{2}}£©$£¬ÇÒa£¬b£¬cµÄ¹«±ÈΪ$\frac{{\sqrt{2}}}{2}$£¬ÇóèÑÛÇúÏߦ£µÄ·½³Ì£»
£¨2£©¶ÔÓÚÌ⣨1£©ÖеÄÇóèÑÛÇúÏߦ££¬ÈÎ×÷бÂÊΪk£¨k¡Ù0£©ÇÒ²»¹ýÔ­µãµÄÖ±ÏßÓë¸ÃÇúÏßÏཻ£¬½»ÍÖÔ²T1ËùµÃÏÒµÄÖеãΪM£¬½»ÍÖÔ²T2ËùµÃÏÒµÄÖеãΪN£¬ÇóÖ¤£º$\frac{{{k_{OM}}}}{{{k_{ON}}}}$ΪÓëkÎ޹صĶ¨Öµ£»
£¨3£©ÈôбÂÊΪ$\sqrt{2}$µÄÖ±ÏßlΪÍÖÔ²T2µÄÇÐÏߣ¬ÇÒ½»ÍÖÔ²T1ÓÚµãA£¬B£¬NΪÍÖÔ²T1ÉϵÄÈÎÒâÒ»µã£¨µãNÓëµãA£¬B²»Öغϣ©£¬Çó¡÷ABNÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒâÖª$b=\sqrt{2}$£¬$\frac{b}{a}$=$\frac{c}{b}$=$\frac{\sqrt{2}}{2}$£¬´Ó¶øÇóèÑÛÇúÏߦ£µÄ·½³Ì£»
£¨2£©Éè½»µãC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬´Ó¶ø¿ÉµÃ${x_0}=\frac{{{x_1}+{x_2}}}{2}£¬{y_0}=\frac{{{y_1}+{y_2}}}{2}$£¬ÁªÁ¢·½³Ì»¯¼ò¿ÉµÃ$k•{k_{OM}}=-\frac{1}{2}$£¬k•kON=-2£»´Ó¶ø½âµÃ£»
£¨3£©ÉèÖ±ÏßlµÄ·½³ÌΪ$y=\sqrt{2}x+m$£¬ÁªÁ¢·½³Ì»¯¼ò$£¨{{b^2}+2{c^2}}£©{x^2}+2\sqrt{2}m{c^2}x+{m^2}{c^2}-{b^2}{c^2}=0$£¬´Ó¶ø¿ÉµÃ${l_1}£ºy=\sqrt{2}x+\sqrt{{b^2}+2{c^2}}$£¬Í¬Àí¿ÉµÃ${l_2}£ºy=\sqrt{2}x-\sqrt{{b^2}+2{a^2}}$£¬´Ó¶øÀûÓÃÁ½Æ½ÐÐÏß¼ä¾àÀë±íʾÈý½ÇÐεĸߣ¬ÔÙÇó$|{AB}|=\frac{{2\sqrt{3}ab\sqrt{2{a^2}-2{c^2}}}}{{{b^2}+2{a^2}}}$£»´Ó¶øÇó×î´óÃæ»ý£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÖª£¬$b=\sqrt{2}$£¬$\frac{b}{a}$=$\frac{c}{b}$=$\frac{\sqrt{2}}{2}$£¬
¡àa=2£¬c=1£¬
¡à${T_1}£º\frac{x^2}{4}+\frac{y^2}{2}=1$£¬¡à${T_2}£º\frac{y^2}{2}+{x^2}=1$£»
£¨2£©Ö¤Ã÷£ºÉèбÂÊΪkµÄÖ±Ïß½»ÍÖÔ²T1ÓÚµãC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ï߶ÎCDÖеãM£¨x0£¬y0£©£¬
¡à${x_0}=\frac{{{x_1}+{x_2}}}{2}£¬{y_0}=\frac{{{y_1}+{y_2}}}{2}$£¬
ÓÉ$\left\{\begin{array}{l}\frac{{{x_1}^2}}{4}+\frac{{{y_1}^2}}{2}=1\\ \frac{{{x_2}^2}}{4}+\frac{{{y_2}^2}}{2}=1\end{array}\right.$µÃ$\frac{{£¨{{x_1}-{x_2}}£©£¨{{x_1}+{x_2}}£©}}{4}+\frac{{£¨{{y_1}-{y_2}}£©£¨{{y_1}+{y_2}}£©}}{2}=0$£¬
¡ßk´æÔÚÇÒk¡Ù0£¬
¡àx1¡Ùx2£¬ÇÒx0¡Ù0£¬
¡à$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}•\frac{y_0}{x_0}=-\frac{1}{2}$£¬
¼´$k•{k_{OM}}=-\frac{1}{2}$£»
ͬÀí£¬k•kON=-2£»
¡à$\frac{{{k_{OM}}}}{{{k_{ON}}}}=\frac{1}{4}$£»
£¨3£©ÉèÖ±ÏßlµÄ·½³ÌΪ$y=\sqrt{2}x+m$£¬
ÁªÁ¢·½³ÌµÃ$\left\{\begin{array}{l}y=\sqrt{2}x+m\\ \frac{y^2}{b^2}+\frac{x^2}{c^2}=1\end{array}\right.$£¬
»¯¼òµÃ£¬$£¨{{b^2}+2{c^2}}£©{x^2}+2\sqrt{2}m{c^2}x+{m^2}{c^2}-{b^2}{c^2}=0$£¬
ÓÉ¡÷=0»¯¼òµÃm2=b2+2c2£¬
${l_1}£ºy=\sqrt{2}x+\sqrt{{b^2}+2{c^2}}$£¬
ÁªÁ¢·½³ÌµÃ$\left\{\begin{array}{l}y=\sqrt{2}x+m\\ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\end{array}\right.$£¬
»¯¼òµÃ$£¨{{b^2}+2{a^2}}£©{x^2}+2\sqrt{2}m{a^2}x+{m^2}{a^2}-{b^2}{a^2}=0$£¬
ÓÉ¡÷=0µÃm2=b2+2a2£¬
${l_2}£ºy=\sqrt{2}x-\sqrt{{b^2}+2{a^2}}$£¬
Á½Æ½ÐÐÏß¼ä¾àÀ룺$d=\frac{{\sqrt{{b^2}+2{c^2}}+\sqrt{{b^2}+2{a^2}}}}{{\sqrt{3}}}$£¬
¡à$|{AB}|=\frac{{2\sqrt{3}ab\sqrt{2{a^2}-2{c^2}}}}{{{b^2}+2{a^2}}}$£»
¡à¡÷ABNµÄÃæ»ý×î´óֵΪ$S=\frac{1}{2}|{AB}|•d=\frac{{ab\sqrt{2{a^2}-2{c^2}}£¨{\sqrt{{b^2}+2{c^2}}+\sqrt{{b^2}+2{a^2}}}£©}}{{{b^2}+2{a^2}}}$£®

µãÆÀ ±¾Ì⿼²éÁËѧÉúµÄ»¯¼òÔËËãµÄÄÜÁ¦¼°ÍÖÔ²ÓëÖ±ÏßµÄλÖùØϵµÄÅжÏÓëÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ä³¸ßÈýÄ꼶´Ó¼×£¨ÎÄ£©ÒÒ£¨Àí£©Á½¸öÄ꼶×é¸÷Ñ¡³ö7ÃûѧÉú²Î¼Ó¸ßУ×ÔÖ÷ÕÐÉúÊýѧѡ°Î¿¼ÊÔ£¬ËûÃÇÈ¡µÃµÄ³É¼¨£¨Âú·Ö£º100·Ö£©µÄ¾¥Ò¶Í¼ÈçͼËùʾ£¬ÆäÖм××éѧÉúµÄƽ¾ù·ÖÊÇ85·Ö£¬ÒÒ×éѧÉú³É¼¨µÄÖÐλÊýÊÇ83·Ö£®
£¨1£©ÇóxºÍyµÄÖµ£»
£¨2£©´Ó³É¼¨ÔÚ90·ÖÒÔÉϵÄѧÉúÖÐËæ»úÈ¡Á½ÃûѧÉú£¬Çó¼××éÖÁÉÙÓÐÒ»ÃûѧÉúµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©Âú×㣺f£¨x£©£¾xf¡ä£¨x£©£¬ÇÒf£¨2£©=4£¬Ôò²»µÈʽf£¨x£©-2x£¾0µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨2£¬+¡Þ£©B£®£¨0£¬2£©C£®£¨0£¬4£©D£®£¨4£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÊý¾Ýx1£¬x2£¬¡­£¬x8µÄ·½²îΪ16£¬ÔòÊý¾Ý2x1+1£¬2x2+1£¬¡­£¬2x8+1µÄ±ê×¼²îΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÔÚËÄÀâ׶P-ABCDÖУ¬PA¡ÍABCD£¬AD¡ÍAB£¬AB¡ÎDC£¬AD=DC=AP=2£¬AB=1£¬µãEΪÀâPCµÄÖе㣮
£¨1£©Ö¤Ã÷BE¡ÍDC£»
£¨2£©Çó¶þÃæ½ÇE-AB-PµÄÖµ£»
£¨3£©ÇóÖ±ÏßBEÓëƽÃæPBDËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Éè³£Êý¦Ë£¾0£¬a£¾0£¬º¯Êýf£¨x£©=$\frac{{x}^{2}}{¦Ë+x}$-alnx£®µ±a=$\frac{3}{4}$¦Ëʱ£¬Èôf£¨x£©×îСֵΪ0£¬Çó¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èôº¯Êý$y=\frac{x-b}{x+2}$ÔÚ£¨a£¬a+6£©£¨b£¼-2£©ÉϵÄÖµÓòΪ£¨2£¬+¡Þ£©£¬Ôòa+b=-10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÊýÁÐ{an}£¬SnÊÇÆäÇ°nÏîºÍ£¬Âú×ã${S_n}+{S_{n+1}}=2{n^2}+b$£¬a1=a£®
£¨1£©Èôa=b=1£¬
£¨i£©Çó³öa2£¬a3µÄÖµ£»
£¨ii£©Çó{an}µÄͨÏʽ£®
£¨2£©ÊÇ·ñ´æÔÚÒ»¸ö¸÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁÐ{bn}£¬´æÔÚÒ»¸öÊýÁÐ{an}Âú×ãan=lnbn£¬Èç¹û´æÔÚ£¬Çó³ö{an}ºÍ{bn}µÄͨÏʽ£¬Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn£¬¶ÔÈÎÒân¡ÊN*£¬Sn=£¨-1£©nan+$\frac{1}{2^n}$+n-3ÇÒ£¨an+1-p£©£¨an-p£©£¼0ºã³ÉÁ¢£¬ÔòʵÊýpµÄÈ¡Öµ·¶Î§ÊÇ$£¨{-\frac{3}{4}£¬\frac{11}{4}}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸