精英家教网 > 高中数学 > 题目详情

【题目】对于函数f(x)的定义域中任意的x1、x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
>0;
④f( )<
当f(x)=2x时,上述结论中正确的有( )个.
A.3
B.2
C.1
D.0

【答案】A
【解析】解:当f(x)=2x时,
①f(x1+x2)= = =f(x1)f(x2);①正确;
由①可知②f(x1x2)=f(x1)+f(x2);不正确;
>0;说明函数是增函数,而f(x)=2x是增函数,所以③正确;
④f( )< .说明函数是凹函数,而f(x)=2x是凹函数,所以④正确;
故选:A.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,设点F(1,0),直线l:x=﹣1,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.
(1)求动点Q的轨迹的方程;
(2)记Q的轨迹的方程为E,过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求证:直线MN必过定点R(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系 xOy 中,圆锥曲线 C 的参数方程为 为参数),定点 , F1,F2 是圆锥曲线 C 的左,右焦点.
(1)以原点为极点、 x 轴正半轴为极轴建立极坐标系,求经过点 F1 且平行于直线AF2 的直线 l 的极坐标方程;
(2)在(1)的条件下,设直线 l 与圆锥曲线 C 交于 E,F 两点,求弦 EF 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的极坐标方程为 ,直线l的参数方程为 (t为常数,t∈R)
(1)求直线l的普通方程和圆C的直角坐标方程;
(2)求直线l与圆C相交的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 为参数), 为参数).
(1)化 的方程为普通方程,并说明它们分别表示什么曲线;
(2)若 上的点 对应的参数为 上的动点,求 中点 到直线 为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为 为椭圆的左右顶点,焦点到短轴端点的距离为2, 为椭圆上异于的两点,且直线的斜率等于直线斜率的2倍.

(Ⅰ)求证:直线与直线的斜率乘积为定值;

(Ⅱ)求三角形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1, 在直角梯形中, 为线段的中点. 沿折起,使平面 平面,得到几何体,如图2所示.

1)求证: 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆 的离心率为,焦距为.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,动直线 交椭圆两点, 是椭圆上一点,直线的斜率为,且 是线段延长线上一点,且 的半径为 的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点. 求证:
(Ⅰ)直线EF∥平面ACD;
(Ⅱ)平面EFC⊥平面BCD.

查看答案和解析>>

同步练习册答案