精英家教网 > 高中数学 > 题目详情

【题目】过抛物线的焦点且斜率为1的直线交抛物线两点,且.

(Ⅰ)求抛物线的方程;

(Ⅱ)抛物线上一点,直线(其中)与抛物线交于两个不同的点(均不与点重合).设直线的斜率分别为.直线是否过定点?如果是,请求出所有定点;如果不是,请说明理由.

【答案】(Ⅰ);(Ⅱ)直线恒过定点,定点为.

【解析】

(Ⅰ)假设直线方程,联立直线方程与抛物线方程,根据韦达定理以及抛物线的焦点弦性质,可得结果.

(Ⅱ)根据(Ⅰ)的结论可得,然后联立直线与抛物线的方程,结合韦达定理,利用,可得之间的关系,最后根据直线方程特点,可得结果.

(Ⅰ)由题意得:

设直线方程为:

代入抛物线方程得:

解得:

∴抛物线方程为:

(Ⅱ)由(1)知:抛物线

,设

得:

即:

,解得

时,

恒过定点

∴直线恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线恰有一个公共点.

(Ⅰ)求曲线的极坐标方程;

(Ⅱ)已知曲线上两点满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线处的切线方程为.

(1)求函数的解析式;

(2)求在区间上的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,焦距为

1)求椭圆的标准方程;

2)若一直线与椭圆相交于两点(不是椭圆的顶点),以为直径的圆过椭圆的上顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解小学生的体能情况,现抽取某小学六年级100名学生进行跳绳测试,观察记录孩子们三分钟内的跳绳个数,将所得的数据整理后画出频率分布直方图,跳绳个数的数值落在区间内的频率之比为.(计算结果保留小数点后面3位)

(Ⅰ)求这些学生跳绳个数的数值落在区间内的频率;

(Ⅱ)用分层抽样的方法在区间内抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2个学生,求这2个学生跳绳个数的数值都在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续天监测空气质量指数(),数据统计如下:

空气质量指数()

0-50

51-100

101-150

151-200

201-250

空气质量等级

空气优

空气良

轻度污染

中度污染

重度污染

天数

20

40

10

5

(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;

(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件“两天空气都为良”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正整数的数列{an}的前n项和为Sn,满足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t为常数).

(1)若k=,t=,数列{an}是等差数列,求a1的值;

(2)若数列{an}是等比数列,求证:k<t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为(其中为参数).在以坐标原点为极点,以轴正半轴为极轴建立的极坐标系中,曲线的极坐标方程为,曲线的直角坐标方程为.

(1)求直线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线分别相交于异于原点的点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求函数的单调区间;

(Ⅱ)若上恒成立,求正数的取值范围;

(Ⅲ)证明:.

查看答案和解析>>

同步练习册答案