精英家教网 > 高中数学 > 题目详情
5.下列说法不正确的是(  )
A.有两个面平行,其余各面都是四边形,并且每相邻的两个四边形的公共边都互相平行的几何体叫棱柱
B.圆锥的过轴的截面是一个等腰三角形
C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥
D.圆台平行于底面的截面是圆面

分析 由棱柱的定义判断A,由圆锥的结构特点判断B,由圆锥的概念判断C,由圆台的结构特征判断D.

解答 解:对于A,符合棱柱的定义,A正确;
对于B,由圆锥的结构特征、母线长相等知:过轴的截面是一个等腰三角形,B正确;
对于C,直角三角形绕它的一条直角边旋转一周形成的曲面围成的几何体是圆锥,C不正确;
对于D,由圆台的结构特征知:圆台平行于底面的截面是圆面,D正确;
故选C.

点评 本题考查了柱、锥、台的概念和结构特征,以及命题的真假判断与应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知数列:$\frac{1}{1}$,$\frac{2}{1}$,$\frac{1}{2}$,$\frac{3}{1}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{4}{1}$,$\frac{3}{2}$,$\frac{2}{3}$,$\frac{1}{4}$,…,依它的前10项的规律,这个数列的第2016项
a2016=(  )
A.$\frac{1}{63}$B.$\frac{1}{31}$C.$\frac{3}{61}$D.$\frac{1}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-x3+ax2+bx在x=-1处取得极小值,在x=$\frac{2}{3}$处取得极大值
(1)求实数a,b的值;
(2)求f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“a=b”是“方程ax2+by2=1表示的曲线为圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设D,E,F分别为△ABC的三边BC,CA,AB的中点,则$\overrightarrow{DA}$+$\overrightarrow{FC}$=(  )
A.$\overrightarrow{AD}$B.$\overrightarrow{ED}$C.$\overrightarrow{BE}$D.$\overrightarrow{BC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是一个等差数列
(1)a1=1,a4=7,求通项公式an及前n项和Sn
(2)设S7=14,求a3+a5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.(2x+5y)n展开式中第k项的二项式系数为(  )
A.$C_n^k$B.$C_n^k$2n-k5k
C.$C_n^{k-1}$D.$C_n^{k-1}$2n+1-k5k-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线E的极坐标方程为$ρ=\frac{4tanθ}{cosθ}$,倾斜角为α的直线l过点P(2,2).
(1)求E的直角坐标方程和直线l的参数方程;
(2)设l1,l2是过点P且关于直线x=2对称的两条直线,l1与E交于A,B两点,l2与E交于C,D两点.求证:|PA|:|PD|=|PC|:|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱ADE-BCF中,四边形ABCD为平行四边形,DE⊥平面ABCD,AD=DE=1,AB=2,∠BCD=60°.
(I)求证:BD⊥AE;
(Ⅱ)若GE=$\frac{1}{2}$DE,求直线CG与平面BDF所成角的正弦值.

查看答案和解析>>

同步练习册答案