精英家教网 > 高中数学 > 题目详情
19.已知f(x)=2sin(ωx+φ)的部分图象如图所示,则下列叙述中不正确的是(  )
A.x=-$\frac{π}{2}$是函数f(x)的一条对称轴
B.φ的所有取值中,绝对值最小的是$\frac{5π}{4}$
C.($\frac{π}{2}$,0)是函数f(x)的一个对称中心
D.若f(x1)-f(x2)=4,则|x1-x2|的最小值为$\frac{2π}{3}$

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,再利用正弦函数的图象特征,得出结论.

解答 解:由f(x)=2sin(ωx+φ)的部分图象,可得A=2,$\frac{3}{4}$T=$\frac{3}{4}•\frac{2π}{ω}$=$\frac{5π}{6}$+$\frac{π}{6}$,求得ω=$\frac{3}{2}$,
再根据五点法作图可得$\frac{3}{2}$•(-$\frac{π}{6}$)+φ=π,求得φ=$\frac{5π}{4}$,∴f(x)=2sin($\frac{3}{2}$x+$\frac{5π}{4}$).
当x=-$\frac{π}{2}$时,函数f(x)取得最大值为2,可得x=-$\frac{π}{2}$是函数f(x)的一条对称轴,故A正确.
φ的所有取值中,根据得sin[$\frac{3}{2}$•(-$\frac{π}{6}$)+φ]=0,可得得$\frac{3}{2}$•(-$\frac{π}{6}$)+φ=kπ,k∈Z,绝对值最小的是$\frac{π}{4}$,故B错误.
当x=$\frac{π}{2}$时,函数f(x)=0,故($\frac{π}{2}$,0)是函数f(x)的一个对称中心,故C 正确.
若f(x1)-f(x2)=4,则|x1-x2|的最小值等于半个周期,即$\frac{1}{2}•\frac{2π}{\frac{3}{2}}$=$\frac{2π}{3}$,故D正确,
故选:B.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)当x∈[-1,1]时,不等式:f(x)>2x+m恒成立,求实数m的范围.
(3)设g(t)=f(2t-a),t∈[-1,1],求g(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C1:x2+y2+6x=0关于直线l1:y=2x+1对称的圆为C.
(1)求圆C的方程;
(2)过点(-1,0)作直线l与圆C交于A,B两点,O是坐标原点.设$\overrightarrow{OS}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,是否存在这样的直线l,使得四边形OASB的对角线相等?若存在,求出所有满足条件的直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,a1=2,则Sn=2n+1-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在锐角△ABC中,内角∠A、∠B、∠C的对边分别为a、b、c,已知a=$\sqrt{2}$bsinA.
(1)求∠B的大小;
(2)若AO是边BC上的中线,AO=BC=2,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.由-1,0,1,2,3中选三个(不重复)数字组成二次函数y=ax2+bx+c的系数.
(1)开口向上且不过原点的不同抛物线有几条?
(2)与x轴的正、负半轴均有交点的不同抛物线有多少条?
(3)与x轴负半轴至少有一个交点的不同抛物线有多少条?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\frac{\sqrt{x+2}}{x+3}$的值域是$[0,\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinx+cosx=$\frac{1}{5}$,且0<x<π.
(1)求sinx-cosx的值;
(2)求sin3x-cos3x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=$\sqrt{-{x}^{2}+bx+c}$的定义域是{x|2≤x≤3},则b和c的值分别为5,-6.

查看答案和解析>>

同步练习册答案