精英家教网 > 高中数学 > 题目详情
下列四个命题:正确命题的个数为(  )
①若函数f(x)=ax2+bx+2与x轴没有交点,则a≠0且b2-8a<0;
②若logm3<lgn3<0,则0<n<m<1;
③对于函数f(x)=lnx的定义域中任意的x1,x2(x1≠x2)必有f(
x1+x2
2
)
f(x1)+f(x2)
2

④若函数f(x)=3x-2x-3,则方程f(x)=0有2个实数根.
A.1B.2C.3D.4
①由若函数f(x)=ax2+bx+2与x轴没有交点,则b2-8a<0且a>0,或者b2-8a<0且a<0,或者a=b=0;所以此命题错;
②由logm3<logn3<0得
1
log3m
1
log3n
<0
,即log3n<log3m<0,所以0<n<m<1,所以②正确;
③f(
x1+x2
2
)-
f(x1)+f(x2)
2
=ln(
x1+x2
2
)-
lnx1+lnx2
2

=ln(
x1+x2
2
)-ln
x1x2

∵x1,x2∈(0,+∞)(且x1≠x2),∴
x1+x2
2
x1x2

又f(x)在(0,+∞)上单调递增,∴ln(
x1+x2
2
)>ln
x1x2

∴f(
x1+x2
2
)>
f(x1)+f(x2)
2
,命题③错误;
④∵函数y=3x与y=2x+3的图象有两个交点,∴方程f(x)=0有2个实数根,命题④正确.
故答案为:B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知命题P:方程x2+(m-3)x+1=0无实根,命题Q:方程x2+
y2
m-1
=1
是焦点在y轴上的椭圆.若¬P与P∧Q同时为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①若ab>0,a>b,则
1
a
1
b

②若已知直线x=m与函数f(x)=sinx,g(x)=sin(
π
2
-x)的图象分别交于点M,N,则|MN|的最大值为
2

③若数列an=n2+λn(λ∈N*)为单调递增数列,则λ取值范围是λ<-2;
④若直线l的斜率k<1,则直线l的倾斜角-
π
2
<α<
π
4

其中真命题的序号是:______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中错误的是(  )
A.如果命题“¬p”与命题“p∨q”都是真命题,那么命题q一定是真命题
B.命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”
C.若命题p:?x∈R,x2-x+1<0,则¬p:?x∈R,x2-x+1≥0
D.“a=2”是“直线ax+2y=0平行于直线x+y=1”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列说法正确的有______
(1)直线与平面所成的角α的范围是[0°,90°]
(2)函数f(x)在区间(a,b)上连续可导,则f′(x)>0是函数f(x)在区间(a,b)上为增函数充要条件
(3)已知F1,F2为两定点,|F1F2|=6动点P满足|PF1|-|PF2|=4则动点P的轨迹为双曲线的一支
(4)函数f(x)=x3-12x+24的单调增区间为:(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:
①PA平面MOB;②MO平面PAC;③OC⊥平面PAC;
④平面PAC⊥平面PBC.其中正确的命题是(  )
A.①和②B.②和③C.③和④D.②和④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列语句不是命题的有(  )
①x2-3=0;②与一条直线相交的两直线平行吗?③3+1=5;④5x-3>6.
A.①③④B.①②③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题为真命题的是(  )
A.椭圆的离心率大于1
B.双曲线
x2
m2
-
y2
n2
=-1
的焦点在x轴上
C.?a,b∈R,
a+b
2
ab
D.?x∈R,sinx+cosx=
7
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:?x∈R,使2x2+(k-1)x+
1
2
≤0
;命题q:方程
x2
9-k
+
y2
k-1
=1
表示焦点x轴上的椭圆,若¬p为真命题,p∨q为真命题,求实数k的取值范围.

查看答案和解析>>

同步练习册答案