精英家教网 > 高中数学 > 题目详情

【题目】下面六个句子中,错误的题号是________.

①周期函数必有最小正周期;

②若至少有一个为

为第三象限角,则

④若向量的夹角为锐角,则

⑤存在,使成立;

⑥在中,O内一点,且,则O的重心.

【答案】①②③

【解析】

①常函数没有最小正周期;

是非零向量时,代表的是两向量垂直;

③可采用赋值法,令判断正误;

④由数量积公式即可判断;

⑤令即可判断;

⑥结合平面向量加法法则和重心特征即可求解;

①常函数没有最小正周期,故判断错误;

是非零向量时,,判断错误;

③令,则,即,显然错误;

④若向量的夹角为锐角,则,判断正确;

⑤当,判断正确;

⑥若,如图:

中点,则,则,所以三点共线,且,故O的重心,判断正确;

故答案为:①②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱台中, 底面,平面平面的中点.

(1)证明:

(2)若,且,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系动点到定点的距离与它到直线的距离相等.

1)求动点的轨迹的方程;

2)设动直线与曲线相切于点与直线相交于点

证明:以为直径的圆恒过轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为2PBC的中点,Q为线段上的动点,过点APQ的平面截该正方体所得的截面记为S,则下列命题正确的是______(写出所有正确命题的编号).

①当时,S为四边形;②当时,S为等腰梯形;③当时,S的交点R满足;④当时,S为五边形;⑤当时,S的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区工会利用 “健步行”开展健步走积分奖励活动会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分)记年龄不超过40岁的会员为类会员,年龄大于40岁的会员为类会员为了解会员的健步走情况,工会从两类会员中各随机抽取名会员,统计了某天他们健步走的步数,并将样本数据分为 九组,将抽取的类会员的样本数据绘制成频率分布直方图, 类会员的样本数据绘制成频率分布表图、表如下所示).

的值;

从该地区类会员中随机抽取名,设这名会员中健步走的步数在千步以上(含千步)的人数为,求的分布列和数学期望;

设该地区类会员和类会员的平均积分分别为,试比较的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,圆与圆的公切线的条数的可能取值共有(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求曲线处的切线方程;

)若函数在定义域内不单调,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于项数为)的有穷正整数数列,记),即中的最大值,称数列为数列的“创新数列”.比如的“创新数列”为.

1)若数列的“创新数列”为1,2,3,4,4,写出所有可能的数列

2)设数列为数列的“创新数列”,满足),求证: );

3)设数列为数列的“创新数列”,数列中的项互不相等且所有项的和等于所有项的积,求出所有的数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数的部分图象.

1)求函数的表达式;

2)若函数满足方程,求在内的所有实数根之和;

3)把函数的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图象.若对任意的,方程在区间上至多有一个解,求正数的取值范围.

查看答案和解析>>

同步练习册答案