精英家教网 > 高中数学 > 题目详情
如图l,在正方形ABCD中,AB=2,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点.将ADAE,CDCF折起,使A、C重合于A点,构成如图2所示的几何体.
(I)求证:A′D⊥面A′EF;
(Ⅱ)试探究:在图1中,F在什么位置时,能使折起后的几何体中EF∥平面AMN,并给出证明.

【答案】分析:(Ⅰ)由题意可得,A′D⊥A′E,A′D⊥A′F,A′E∩A′F=A′,利用线面垂直的判定定理即可证得结论;
(Ⅱ)当点F为BC的中点时,EF∥面A′MN.在图(1)中,E,F分别是AB,BC的中点,可得EF∥AC,而M∈AC,N∈AC,从而可得EF∥MN,继而有EF∥平面AMN.
解答:证明:(Ⅰ)∵A′D⊥A′E,A′D⊥A′F,
又A′E∩A′F=A′,A′E?面A′EF,A′F?面A′EF,
∴A′D⊥面A′EF.                             
(Ⅱ)当点F为BC的中点时,EF∥面A′MN.   
证明如下:当点F为BC的中点时,
在图(1)中,E,F分别是AB,BC的中点,
所以EF∥AC,
即在图(2)中有EF∥MN.                   
又EF?面A′MN,MN?面A′MN,
所以EF∥面A′MN.
点评:本题考查直线与平面垂直的判定与直线与平面平行的判定,正确理解题意,将图形折起是基础,熟练应用线面垂直与线面平行的判定定理是解决问题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泉州模拟)如图l,在正方形ABCD中,AB=2,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点.将ADAE,CDCF折起,使A、C重合于A点,构成如图2所示的几何体.
(I)求证:A′D⊥面A′EF;
(Ⅱ)试探究:在图1中,F在什么位置时,能使折起后的几何体中EF∥平面AMN,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图l,在正方形ABCD中,AB=2,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点.将ADAE,CDCF折起,使A、C重合于A点,构成如图2所示的几何体.
(I)求证:A′D⊥面A′EF;
(Ⅱ)试探究:在图1中,F在什么位置时,能使折起后的几何体中EF∥平面AMN,并给出证明.

查看答案和解析>>

科目:高中数学 来源:河南省模拟题 题型:解答题

如图l,在正方形ABCD中,AB=2,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点.将ADAE,CDCF折起,使A、C重合于A点,构成如图2所示的几何体.
(I)求证:A′D⊥面A′EF;
(Ⅱ) 试探究:在图1中,F在什么位置时,能使折起后的几何体中EF∥平面AMN,并给出证明.

查看答案和解析>>

科目:高中数学 来源:2012年福建省泉州市高三3月质量检查数学试卷(文科)(解析版) 题型:解答题

如图l,在正方形ABCD中,AB=2,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点.将ADAE,CDCF折起,使A、C重合于A点,构成如图2所示的几何体.
(I)求证:A′D⊥面A′EF;
(Ⅱ)试探究:在图1中,F在什么位置时,能使折起后的几何体中EF∥平面AMN,并给出证明.

查看答案和解析>>

同步练习册答案