精英家教网 > 高中数学 > 题目详情
设函数f(x)=|x|x+bx+c,给出下列4个命题:
①b=0,c>0时,f(x)=0只有一个实数根;  ②c=0时,y=f(x)是奇函数;
③y=f(x)的图象关于点(0,c)对称;     ④方程f(x)=0至多有2个实数根
其中真命题的个数是(  )
分析:本题考查的知识点是,判断命题真假,同时考查了分段函数的图象,根据函数f(x)=|x|x+bx+c的图象关于(0,c)对称,结合b、c的取值情况,对四个结论逐一判断,可以得到正确结论.
解答:解:b=0时,原函数化为f(x)=
x2+c   x>0
-x2+c  x<0
因为c>0,所以当x>0时,函数顶点在x轴上方且开口向上,图象与x轴无交点,当x<0时,图象顶点在x轴上方且开口向下,图象与x轴只有一个交点,故方程f(x)=0只有一个实数根,命题①正确.
 当c=0时,数f(x)=|x|x+bx,定义域关于原点对称,f(-x)=|-x|(-x)+b(-x)=-(|x|x+bx)=-f(x),所以f(x)是奇函数,故②命题正确.
因为f(x)=|x|x+bx为奇函数,所以图象关于(0,0)对称,而f(x)=|x|x+bx+c是把f(x)=|x|x+bx向上或向下平移了|c|各单位,所以y=f(x)的图象关于点(0,c)对称,故命题③正确.
对于命题④,只需举一个反例,如b=-3,c=1方程f(x)=0就可化为x2-3x+1=0(x>0)或-x2-3x+1=0(x<0),求出方程有3个解,所以命题④不正确.
故选C
点评:把函数f(x)=|x|x+bx+c进行分段是处理该问题的关键,同时注意数形结合的解题思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案