精英家教网 > 高中数学 > 题目详情
10.若圆(x-1)2+y2=25的弦AB被点P(2,1)平分,则直线AB的方程为(  )
A.2x+y-3=0B.x+y-3=0C.x-y-1=0D.2x-y-5=0

分析 由圆的方程找出圆心C的坐标,连接CP,由P为弦AB的中点,根据垂径定理的逆定理得到CP垂直于AB,根据两直线垂直时斜率的乘积为-1,由P与C的坐标求出直线PC的斜率,进而确定出弦AB所在直线的斜率,由P的坐标及求出的斜率,写出直线AB的方程即可.

解答 解:由圆(x-1)2+y2=25,得到圆心C坐标为(1,0),
又P(2,1),∴kPC=1,
∴弦AB所在的直线方程斜率为-1,又P为AB的中点,
则直线AB的方程为y-1=-(x-2),即x+y-3=0.
故选B.

点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,垂径定理,两直线垂直时斜率满足的关系,以及直线的点斜式方程,根据题意得出直线PC与直线AB垂直是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,设A(x1,y1),B(x2,y2).定义:${d_α}(A,B)={({|{{x_1}-{x_2}}|^α}+{|{{y_1}-{y_2}}|^α})^{\frac{1}{α}}}$,其中α∈R+(R+表示正实数).
(Ⅰ)设A(1,1),B(2,3),求d1(A,B)和d2(A,B)的值;
(Ⅱ) 求证:对平面中任意两点A和B都有${d_2}(A,B)≤{d_1}(A,B)≤\sqrt{2}{d_2}(A,B)$;
(Ⅲ)设M(x,y),O为原点,记${D_α}=\{M(x,y)|{d_α}(M,O)≤1,α∈{R^+}\}$.若0<α<β,试写出Dα与Dβ的关系(只需写出结论,不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将参加环保知识竞赛的学生成绩整理后画出的频率分布直方图如图所示,则图中a的值为0.028. 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)为偶函数,且f(x+2)=-f(x),当x∈(0,1)时,f(x)=($\frac{1}{2}$)x,则f($\frac{7}{2}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过A(0,1),B(3,5)两点的直线的斜率是(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆C:(x-4)2+(y-3)2=9,若P(x,y)是圆C上一动点,则x的取值范围是1≤x≤7;$\frac{y}{x}$的最大值是$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(-2)=(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)是定义在R上的偶函数,且f(x)在[0,+∞)是减函数,若f(lgx)>f(1),则x的取值范围是(  )
A.$(\frac{1}{10},10)$B.(0,10)C.(10,+∞)D.$(0,\frac{1}{10})∪(10,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f′(x)为函数f(x)=$\frac{1}{3}a{x^3}+(3-a){x^2}$-7x+5(a>0)的导函数,当x∈[-2,2]时,|f′(x)|≤7恒成立,则f(x)=x3-7x+5.

查看答案和解析>>

同步练习册答案