精英家教网 > 高中数学 > 题目详情
1.当二次函数y=x2-2x-7的图象在直线y=1的上方时,自变量x的取值范围是(-∞,-2)∪(4,+∞).

分析 二次函数y=x2-2x-7的图象在直线y=1的上方时,即函数值大于1,可得x2-2x-7>1,解二次不等式即可.

解答 解:由题意可知
x2-2x-7>1,
∴x>4或x<-2.
故答案为(-∞,-2)∪(4,+∞).

点评 考查了函数图形的理解和二次不等式的解法.属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知A(-3,6),B(3,-6),则$\overrightarrow{AB}$=(6,-12),|$\overrightarrow{BA}$|=6$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(-1,3),$\overrightarrow{b}$=(1,y).若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°,则y=2或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC为钝角三角形,命题“p:对△ABC的任意两个内角α,β,都有cosα+cosβ>0”,下列结论正确的是(  )
A.¬p:对△ABC的任意两个内角α,β,都有cosα+cosβ≤0:假命题
B.¬p:对△ABC中存在两个内角α,β,都有cosα+cosβ≤0:真命题
C.¬p:对△ABC的任意两个内角α,β,都有cosα+cosβ≤0:真命题
D.¬p:对△ABC中存在两个内角α,β,都有cosα+cosβ≤0:假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设0<a<$\frac{1}{2}$,则1-a2,1+a2,$\frac{1}{1-a}$,$\frac{1}{1+a}$按从小到大的顺序排列为$\frac{1}{1+a}$<1-a2<1+a2<$\frac{1}{1-a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知对任意平面向量$\overrightarrow{AB}$=(x,y),把$\overrightarrow{AB}$绕其起点沿逆时针方向旋转θ角得到向量$\overrightarrow{AP}$=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转角得到点P.
(1)已知平面内点A(1,2),点B(1+$\sqrt{2},2-2\sqrt{2}$).把点B绕点A沿逆时针旋转$\frac{π}{4}$后得到点P,求点P的坐标;
(2)设平面曲线C上的每一点绕坐标原点沿逆时针方向旋转$\frac{π}{4}$后得到的点的轨迹是曲线x2-y2=3,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求与直线5x-3y+3=0平行,且与直线5x-3y+3=0的距离为$\sqrt{17}$的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$中,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,|$\overrightarrow{a}$+$\overrightarrow{b}$|=6,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{30}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(sinωx+cosωx)2+$\sqrt{3}$(sin2ωx-cos2ωx),(ω>0)的最小正周期为π.
(1)求ω的值及f(x)的单调递增区间;
(2)在锐角△ABC中,角ABC所对的边分别为abc,f (A)=$\sqrt{3}$+1,a=2,且b+c=4,求△ABC的面积.

查看答案和解析>>

同步练习册答案