精英家教网 > 高中数学 > 题目详情

已知数列的前项和是,且.求数列的通项公式;

解析试题分析:由题意根据数列前项和定义,尽可能对条件进行挖掘利用,因为,所以由条件可求出数列的首项,当时,有,由条件可得,即,从而发现数列是以首项为,公比为的等比数列,再由等比数列的通项公式可求得数列的通项公式.
试题解析:当时,,∴;      2分
时,          4分
两式相减得,即,又,∴    8分
∴数列是以为首项,为公比的等比数列.      10分
      12分
考点:1.数列前项和定义;2.等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在数列中,,设
(1)证明:数列是等比数列;
(2)求数列的前项和
(3)若为数列的前项和,求不超过的最大的整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为等比数列,为其前项和,已知.
(1)求的通项公式;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足:
(1)求的值;
(2)求证:数列是等比数列;
(3)令),如果对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若是常数,问当满足什么条件时,函数有最大值,并求出取最大值时的值;
(2)是否存在实数对同时满足条件:(甲)取最大值时的值与取最小值的值相同,(乙)
(3)把满足条件(甲)的实数对的集合记作A,设,求使的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为实数,数列满足,当时,
(Ⅰ);(5分)
(Ⅱ)证明:对于数列,一定存在,使;(5分)
(Ⅲ)令,当时,求证:(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列中,
(1)和公比
(2)前6项的和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项其中令集合.
(Ⅰ)若是数列中首次为1的项,请写出所有这样数列的前三项;
(Ⅱ)求证:
(Ⅲ)当时,求集合中元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为等比数列, 其前项和为, 已知, 且对于任意的, , 成等差;求数列的通项公式;

查看答案和解析>>

同步练习册答案