精英家教网 > 高中数学 > 题目详情

【题目】市面上有某品牌型和型两种节能灯,假定型节能灯使用寿命都超过5000小时,经销商对型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:

某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,20瓦和55瓦的两种节能灯照明效果相当,都适合安装.已知型和型节能灯每支的价格分别为120元、25元,当地商业电价为0.75/千瓦时,假定该店面正常营业一年的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯更换.(用频率估计概率)

1)若该商家新店面全部安装了型节能灯,求一年内恰好更换了2支灯的概率;

2)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.

【答案】(1);(2)应选择A型节能灯.

【解析】

(1)由频率分布直方图可知用频率估计概率,得m型节能灯使用寿命超过3600小时的概率为,从而一年内一支B型节能灯在使用期间需更换的概率为,由此能求出一年内5支恰好更换了2支灯的概率.

(2)共需要安装5支同种灯管,选择A型节能灯,一年共需花费5×120+3600×5×20×0.75×10﹣3=870元;选择B型节能灯,由于B型节能灯一年内需更换服从二项分布,一年共需花费元,由此能求出该商家应选择A型节能灯.

(1)由频率分布直方图可知,B型节能灯使用寿命超过3600小时的频率为0.2,

用频率估计概率,得B型节能灯使用寿命超过3600小时的概率为.

所以一年内一支B型节能灯在使用期间需更换的概率为,.

所以一年内支恰好更换了支灯的概率为..

(2)共需要安装支同种灯管,

若选择A型节能灯,一年共需花费元;

若选择B型节能灯,由于B型节能灯一年内需更换服从二项分布

故一年需更换灯的支数的期望为支,

故一年共需花费元.

因为,所以该商家应选择A型节能灯.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过抛物线的一条弦的中点作平行于抛物线对称轴的平行线(或与对称轴重合),交抛物线于一点,称以该点及弦的端点为顶点的三角形为这条弦的阿基米德三角形(简称阿氏三角形).

现有抛物线:,直线(其中是常数,且),直线交抛物线两点,设弦的阿氏三角形是.

1)指出抛物线的焦点坐标和准线方程;

2)求的面积(用表示);

3)称的阿氏为一阶的;的阿氏为二阶的;的阿氏三角形为三阶的;……,由此进行下去,记所有的阶阿氏三角形的面积之和为,探索之间的关系,并求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)设函数,若存在,使,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上一点关于原点的对称点为为其右焦点,若,设,且,则该椭圆的离心率的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求最小的正整数,使得当正整数点时,在前个正整数构成的集合中,对任意总存在另一个数,满足为平方数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数,为常数,并且.

1)判断函数在区间内是否存在极值点,并说明理由;

2)若当时,恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论:

“直线l与平面平行”是“直线l在平面外”的充分不必要条件;

p,则

命题“设a,若,则”为真命题;

”是“函数上单调递增”的充要条件.

其中所有正确结论的序号为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率,左焦点为,右顶点为,过点的直线交椭圆于两点,若直线垂直于轴时,有.

(1)求椭圆的方程;

(2)设直线 上两点 关于轴对称,直线与椭圆相交于点异于点),直线轴相交于点.若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.

(1)求椭圆的方程;

(2)过椭圆的右焦点作直线交椭圆两点,交轴于点,若,求证:为定值.

查看答案和解析>>

同步练习册答案