【题目】椭圆: (a>b>0),左右焦点分别是F1 , F2 , 焦距为2c,若直线 与椭圆交于M点,满足∠MF1F2=2∠MF2F1 , 则离心率是( )
A.
B. -1
C.
D.
科目:高中数学 来源: 题型:
【题目】如图几何体中,等边三角形所在平面垂直于矩形所在平面,又知,//.
(1)若的中点为,在线段上,//平面,求;
(2)若平面与平面所成二面角的余弦值为,求直线与平面所成角的正弦值;
(3)若中点为,,求在平面上的正投影。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.
(1)求的方程;
(2)若动点在直线上,过作直线交椭圆于两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆经过点,离心率为.
(1)求的方程;
(2)过的左焦点且斜率不为的直线与相交于,两点,线段的中点为,直线与直线相交于点,若为等腰直角三角形,求的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)双曲线的离心率为_____________
(2)点P是椭圆上一点,分别是椭圆的左、右焦点,若,则的大小______ .
(3)如果是抛物线y2=4x上的点,它们的横坐标依次为,F是抛物线的焦点,若则_______________.
(4)若x,y满足约束条件,则z=x2+y2的最大值为______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线C于点N.
(1)证明:抛物线C在点N处的切线与AB平行;
(2)是否存在实数k使以AB为直径的圆M经过点N,若存在,求k的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设p:不等式x2+(m﹣1)x+1>0的解集为R;q:x∈(0,+∞),m≤x+ 恒成立.若“p且q”为假命题,“p或q”为真命题,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右顶点分别为A,B,直线l斜率大于0,且l经过椭圆的右焦点F,与椭圆交于两点P,Q,若△AFP,△BFQ的面积分别为S1,S2,若,则直线l的斜率为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com