选修4-1几何证明选讲
如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。
(Ⅰ)若,求CD的长;
(Ⅱ)若 ∠ADO :∠EDO=4 :1,求扇形OAC(阴影部分)的面积(结果保留)。
(1)因为AB是⊙O的直径,OD=5
所以∠ADB=90°,AB=10
在Rt△ABD中,
又,所以,
所以。。。。。。。。。。。。。。。。。。。。。。。。。2分
因为∠ADB=90°,AB⊥CD
所以
所以
所以, 所以 。。。。。。。。。5分
(2)因为AB是⊙O的直径,AB⊥CD, 所以, 所以∠BAD=∠CDB,∠AOC=∠AOD. 因为AO=DO,所以∠BAD=∠ADO, 所以∠CDB=∠ADO。。。。。。2分
设∠ADO=4x,则∠CDB=4x. 由∠ADO :∠EDO=4 :1,则∠EDO=x.
因为∠ADO+∠EDO+∠EDB=90°,所以, 所以x=10°
所以∠AOD=180°-(∠OAD+∠ADO)=100°
所以∠AOC=∠AOD=100°,故 。。。。。。。。。5分
科目:高中数学 来源: 题型:
π | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
192 |
25 |
192 |
25 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
π |
4 |
2 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
π |
3 |
5 |
2 |
5 |
2 |
x+2y |
xy |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com