精英家教网 > 高中数学 > 题目详情
4.设集合A={x|(x+3)(x-4)≤0},集合B={x|m-1≤x≤3m-2},若A∩B=B,则实数m的取值范围为m≤2.

分析 先求出集合A,然后对B是否为空集讨论,求出m的范围

解答 解:集合A={x|(x+3)(x-4)≤0}=[-3,4],
∵A∩B=B,
∴B⊆A,
当B为空集时,m-1>3m-2,可得m<$\frac{1}{2}$,
当B不是空集时,m$≥\frac{1}{2}$且$\left\{\begin{array}{l}{m-1≥-3}\\{3m-2≤4}\end{array}\right.$可得$\frac{1}{2}$≤m≤2,
所以:m≤2.
故答案为:m≤2.

点评 本题考查绝对值不等式的解法,集合的包含关系判断及应用,考查学生分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足a1=x,a2=3x,Sn+1+Sn+Sn-1=3n2+2(n≥2,n∈N*),Sn是数列{an}的前n项和.
(1)若数列{an}为等差数列.
(ⅰ)求数列的通项an
(ⅱ)若数列{bn}满足bn=2an,数列{cn}满足cn=t2bn+2-tbn+1-bn,试比较数列{bn}前n项和Bn与{cn}前n项和Cn的大小;
(2)若对任意n∈N*,an<an+1恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.角α始边与x轴非负半轴重合,终边经过点P(-2,1),则tan2α-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过点(2,3),且斜率为2的直线l的截距式方程为$\frac{x}{\frac{1}{2}}$+$\frac{y}{-1}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设圆C:(x-k)2+(y-2k+1)2=1,则圆C的圆心轨迹方程为2x-y-1=0,若k=0时,则直线l:3x+y-1=0截圆C所得的弦长=$\frac{{2\sqrt{15}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,已知D是AB边上一点,若$\overrightarrow{AD}$=2$\overrightarrow{DB}$,$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:函数y=(a-1)x在R上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意的实数x恒成立,若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)=$\sqrt{|x+1|+|x+2|-a}$.
(Ⅰ)若a=5,求函数f(x)的定义域A;
(Ⅱ)设a,b∈(-1,1),证明:$\frac{|a+b|}{2}$<|1+$\frac{ab}{4}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=4x-2x+1的最小值为-1.

查看答案和解析>>

同步练习册答案