精英家教网 > 高中数学 > 题目详情
17.已知集合A={1,2,3},B={0,1,2,4},则A∩B=(  )
A.{0,1,2,3,4}B.{0,4}C.{1,2}D.{3}

分析 利用交集定义直接求解.

解答 解:∵集合A={1,2,3},B={0,1,2,4},
∴A∩B={1,2}.
故选:C.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.从1,2,3,4,5,6,7中任取两个不同的数,事件A为“取到的两个数的和为偶数”,事件B为“取到的两个数均为奇数”则P(B|A)=(  )
A.$\frac{4}{7}$B.$\frac{3}{7}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,若函数f(x)=min{x2-3x+3,-|x-3|+3},且f(x)在区间[m,n]上的值域为[$\frac{3}{4}$,$\frac{7}{4}$],则区间[m,n]长度的最大值为(  )
A.1B.$\frac{7}{4}$C.$\frac{11}{4}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax+lnx+$\frac{a+1}{x}$
(Ⅰ)若a≥0或a≤-1时,讨论f(x)的单调性;
(Ⅱ)证明:f(x)至多一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知p:x2+2x-8<0,q:(x-1+m)(x-1-m)≤0(m>0).
(1)使p成立的实数x的取值集合记为A,q成立的实数x的取值集合记为B,当m=2时,求A∩B;
(2)若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.盒内放有大小相同的10个小球,其中有5个红球,3个白球,2个黄球,从中任取2个球,求其中至少有1个白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线m、n与平面α,β,m⊥α,n⊥β,若α⊥β,则m、n的位置关系是(  )
A.平行B.垂直C.相交D.异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≥1}\\{x≤2}\end{array}}\right.$,则目标函数z=-2x+y的最大值为(  )
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各组函数表示同一函数的是(  )
A.y=x与$y=\sqrt{x^2}$B.y=x+1与$y=\frac{{{x^2}-1}}{x-1}$
C.$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$与y=0D.y=x与$y=\root{3}{{x}^{3}}$

查看答案和解析>>

同步练习册答案