精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xoy中,曲线C的参数方程为 (t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为 . (Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.

【答案】解:(Ⅰ)由 ,得

化成直角坐标方程,得 ,即直线l的方程为x﹣y+4=0.

依题意,设P(2cost,2sint),则P到直线l的距离

,即 时,

故点P到直线l的距离的最小值为

(Ⅱ)∵曲线C上的所有点均在直线l的右下方,∴对t∈R,有acost﹣2sint+4>0恒成立,

(其中 )恒成立,∴ ,又a>0,解得

故a的取值范围为


【解析】(Ⅰ)求出直线的普通方程,设P(2cost,2sint),则P到直线l的距离 ,即可求点P到直线l的距离的最小值;(Ⅱ)若曲线C上的所有点均在直线l的右下方,则对t∈R,有acost﹣2sint+4>0恒成立,即 (其中 )恒成立,即可求a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F1、F2为双曲线的焦点,过F2垂直于实轴的直线交双曲线于A、B两点,BF1交y轴于点C,若AC⊥BF1 , 则双曲线的离心率为(
A.
B.
C.2
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .
(1)求函数 上的单调递增区间;
(2)设 的三个角 所对的边分别为 ,且 成公差大于零的等差数列,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一期间,某商场决定从2种服装、3种家电、4种日用品中,选出3种商品进行促销活动.
(1)试求选出3种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高60元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为n元的奖金;若中两次奖,则获得数额为3n元的奖金;若中三次奖,则共获得数额为 6n元的奖金.假设顾客每次抽奖中奖的概率都是 ,请问:商场将奖金数额n最高定为多少元,才能使促销方案对商场有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,则cosA=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是(
A.(﹣∞,﹣2)
B.[﹣2,+∞)
C.[﹣2,2]
D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同. (Ⅰ)求m﹣n;
(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣ax,在x= 处取得极小值,记g(x)= ,程序框图如图所示,若输出的结果S> ,则判断框中可以填入的关于n的判断条件是(
A.n≤12?
B.n>12?
C.n≤13?
D.n>13?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入的k,b,r的值分别为2,2,4,则输出i的值是(
A.4
B.3
C.6
D.7

查看答案和解析>>

同步练习册答案