【题目】在直角坐标系xoy中,曲线C的参数方程为 (t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为 . (Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.
【答案】解:(Ⅰ)由 ,得 ,
化成直角坐标方程,得 ,即直线l的方程为x﹣y+4=0.
依题意,设P(2cost,2sint),则P到直线l的距离 ,
当 ,即 时, .
故点P到直线l的距离的最小值为 .
(Ⅱ)∵曲线C上的所有点均在直线l的右下方,∴对t∈R,有acost﹣2sint+4>0恒成立,
即 (其中 )恒成立,∴ ,又a>0,解得 ,
故a的取值范围为 .
【解析】(Ⅰ)求出直线的普通方程,设P(2cost,2sint),则P到直线l的距离 ,即可求点P到直线l的距离的最小值;(Ⅱ)若曲线C上的所有点均在直线l的右下方,则对t∈R,有acost﹣2sint+4>0恒成立,即 (其中 )恒成立,即可求a的取值范围.
科目:高中数学 来源: 题型:
【题目】已知F1、F2为双曲线的焦点,过F2垂直于实轴的直线交双曲线于A、B两点,BF1交y轴于点C,若AC⊥BF1 , 则双曲线的离心率为( )
A.
B.
C.2
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】五一期间,某商场决定从2种服装、3种家电、4种日用品中,选出3种商品进行促销活动.
(1)试求选出3种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高60元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为n元的奖金;若中两次奖,则获得数额为3n元的奖金;若中三次奖,则共获得数额为 6n元的奖金.假设顾客每次抽奖中奖的概率都是 ,请问:商场将奖金数额n最高定为多少元,才能使促销方案对商场有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,则cosA= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是( )
A.(﹣∞,﹣2)
B.[﹣2,+∞)
C.[﹣2,2]
D.[0,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同. (Ⅰ)求m﹣n;
(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x3﹣ax,在x= 处取得极小值,记g(x)= ,程序框图如图所示,若输出的结果S> ,则判断框中可以填入的关于n的判断条件是( )
A.n≤12?
B.n>12?
C.n≤13?
D.n>13?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com