精英家教网 > 高中数学 > 题目详情
16.若a、b∈R,则“a2+b2≥4“是“a+b≥4”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

分析 作出不等式对应的区域,结合充分条件和必要条件的定义进行判断即可.

解答 解:a2+b2≥4表示在圆a2+b2=4的外部区域,
a+b≥4表示在直线a+b=4右上方,
由图象知,a+b≥4表示的区域都在圆a2+b2=4的外部,
但圆a2+b2=4的外部不一定都在直线a+b=4的右上方,
比如a=0,b=3时,满足a2+b2≥4但a+b≥4不成立,
即“a2+b2≥4“是“a+b≥4”的必要不充分条件条件,
故选:B

点评 本题主要考查充分条件和必要条件的判断,根据不等式的关系作出对应的图象,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知x满足条件2(${log}_{\frac{1}{2}}$x)2+9${log}_{\frac{1}{2}}$x+9≤0,求函数f(x)=(log2$\frac{x}{3}$)•(log2$\frac{x}{4}$)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若不等式ax2+2ax-4<0的解集为R,则实数a的取值范围是(-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列求导运算正确的是(  )
A.(log2x)′=$\frac{1}{xln2}$B.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$C.[sin(-x)]′=cos(-x)D.(x2cosx)′=-2sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c分别是△ABC的内角A,B,C所对的边长,a=c,且满足bsinA=$\sqrt{3}$acosB.点O为△ABC外一点,OA=2OC=4,求平面四边形ABCO的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若等比数列{an}的各项均为正数,且公比q=2,a3•a13=16,则a9=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线2x-y+2=0过椭圆$\frac{{x}^{2}}{A}$+$\frac{{y}^{2}}{B}$=1(A>0,B>0)的一个焦点和一个顶点,椭圆的方程为(  )
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1B.x2+$\frac{{y}^{2}}{5}$=1
C.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1或$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1D.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1或x2+$\frac{{y}^{2}}{5}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.各项均为正数的等差数列{an}中,a5a10=25,则前14项和S14的最小值为(  )
A.40B.70C.75D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=2$\sqrt{3}$cos2ωx+2sinωcosωx-$\sqrt{3}$(ω>0),其图象上相邻两个最高点之间的距离为$\frac{2}{3}$π.
(Ⅰ)求ω的值;
(Ⅱ)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到y=g(x)的图象,求g(x)在[0,$\frac{4π}{3}$]上的单调增区间;
(Ⅲ)在(Ⅱ)的条件下,求方程g(x)=t(0<t<2)在[0,$\frac{8}{3}$π]内所有实根之和.

查看答案和解析>>

同步练习册答案