精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的不等式:|2x﹣m|≤1的整数解有且仅有一个值为2.
(1)求整数m的值;
(2)在(1)的条件下,解不等式:|x﹣1|+|x﹣3|≥m.

【答案】
(1)解:由不等式|2x﹣m|≤1,可得 ,∵不等式的整数解为2,

,解得 3≤m≤5.

再由不等式仅有一个整数解2,∴m=4


(2)解:本题即解不等式|x﹣1|+|x﹣3|≥4,

当x≤1时,不等式等价于 1﹣x+3﹣x≥4,解得 x≤0,不等式解集为{x|x≤0}.

当1<x≤3时,不等式为 x﹣1+3﹣x≥4,解得x∈,不等式解为

当x>3时,x﹣1+x﹣3≥4,解得x≥4,不等式解集为{x|x≥4}.

综上,不等式解为(﹣∞,0]∪[4,+∞)


【解析】(1)已知关于x的不等式:|2x﹣m|≤1,化简为 ,再利用不等式整数解有且仅有一个值为2,求出m的值.(2)可以分类讨论,根据讨论去掉绝对值,然后求解.
【考点精析】认真审题,首先需要了解绝对值不等式的解法(含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中直线的倾斜角为,且经过点,以坐标系的原点为极点, 轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点,过点的直线与曲线相交于两点,且

(1)平面直角坐标系中,求直线的一般方程和曲线的标准方程;

(2)求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y满足约束条件 ,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2 时,a2+b2的最小值为(
A.5
B.4
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查,并将调查情况进行整理后制成下表:

年龄(岁)

频数

赞成人数

(1)完成被调查人员年龄的频率分布直方图,并求被调査人员中持赞成态度人员的平均年龄约为多少岁?

(2)若从年龄在的被调查人员中各随机选取人进行调查.请写出所有的基本亊件,并求选取人中恰有人持不赞成态度的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱台中,底面为平行四边形, 上的点.且.

(1)求证:

(2)若的中点, 为棱上的点,且与平面所成角的正弦值为,试求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述正确的是
G为△ABC的重心,.
为△ABC的垂心;
为△ABC的外心;
O为△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的夹角为120°,| |=2,| |=3,记| =3 ﹣2 =2 +k
(1)若 ,求实数k的值.
(2)是否存在实数k,使得 ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧面为矩形, 的中点, 交于点 侧面.

(1)证明:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:

质量指标值

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(1)根据以上抽样调查数据 ,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?

(2)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

同步练习册答案