精英家教网 > 高中数学 > 题目详情

【题目】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)

【答案】
(1)解:记“第一次检测出的是次品且第二次检测出的是正品”为事件A,

则P(A)= =


(2)解:X的可能取值为:200,300,400

P(X=200)= =

P(X=300)= =

P(X=400)=1﹣P(X=200)﹣P(X=300)=

X的分布列为:

X

200

300

400

P

EX=200× +300× +400× =350.


【解析】(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(2)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某集团公司为了获得更大的收益,决定以后每年投入一笔资金用于广告促销.经过市场调查,每年投入广告费t百万元,可增加销售额约(2t+ )百万元(t≥0).
(1)若公司当年新增收益不少于1.5百万元,求每年投放广告费至少多少百万元?
(2)现公司准备投入6百万元分别用于当年广告费和新产品开发,经预测,每投入新产品开发费x百万元,可增加销售额约( +3x+ )百万元,问如何分配这笔资金,使该公司获得新增收益最大?(新增收益=新增销售额﹣投入)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc分别是△ABC的三个内角ABC所对的边,且满足(2b﹣acosC=ccosA

)求角C的大小;

)设,求y的最大值并判断当y取得最大值时ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学数学老师分别用两种不同教学方式对入学数学平均分和优秀率都相同的甲、乙两个高一新班(人数均为 人)进行教学(两班的学生学习数学勤奋程度和自觉性一致),数学期终考试成绩茎叶图如下:

(1)现从乙班数学成绩不低于 分的同学中随机抽取两名同学,求至少有一名成绩为 分的同学被抽中的概率;

(2)学校规定:成绩不低于 分的优秀,请填写下面的联表,并判断有多大把握认为“成绩优秀与教学方式有关”.

附:参考公式及数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为: ,直线的参数方程是为参数, ).

(1)求曲线的直角坐标方程;

(2)设直线与曲线交于两点,且线段的中点为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:对于任意正数,都有,且,则称函数为“L函数”.

1)试判断函数是否是“L函数”;

2)若函数为“L函数”,求实数a的取值范围;

(3)若函数L函数,且,求证:对任意,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣kx+(2k﹣3).
(1)若k= 时,解不等式f(x)>0;
(2)若f(x)>0对任意x∈R恒成立,求实数k的取值范围;
(3)若函数f(x)两个不同的零点均大于 ,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为大力提倡“厉行节俭,反对浪费”,某高中通过随机询问100名性别不同的学生是否做到“光盘”行动,得到如表所示联表及附表:

做不到“光盘”行动

做到“光盘”行动

45

10

30

15

P(K2≥k0

0.10

0.05

0.025

k0

2.706

3.841

5.024

经计算:K2= ≈3.03,参考附表,得到的正确结论是(
A.有95%的把握认为“该学生能否做到光盘行到与性别有关”
B.有95%的把握认为“该学生能否做到光盘行到与性别无关”
C.有90%的把握认为“该学生能否做到光盘行到与性别有关”
D.有90%的把握认为“该学生能否做到光盘行到与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC的顶点都在圆O上,点P在BC的延长线上,且PA与圆O切于点A.

(1)若∠ACB=70°,求∠BAP的度数;
(2)若 = ,求 的值.

查看答案和解析>>

同步练习册答案