精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R

(1)AB;

(2),求实数a的取值范围

【答案】(1)AB={x|2<x<10}={x|2<x<37≤x<10}(2)(3,+∞).

【解析】

(1)由题意结合集合的交并补运算进行计算即可;

(2)由题意结合数轴和题意即可确定实数a的取值范围.

(1)因为A={|3≤x<7}B={x|2<x<10},所以AB={x|2<x<10}

={x|x<3x≥7}

所以,={x|x<3x≥7}∩{x|2<x<10}={x|2<x<37≤x<10}

(2)如图,a>3,AC

所以,所求实数a的取值范围是(3,+∞)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足:对任意都有.

1)求证:函数是奇函数;

2)如果当时,有,试判断上的单调性,并用定义证明你的判断;

(3)在(2)的条件下,若对满足不等式的任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测 株树苗的高度,经数据处理得到如图的频率分布直方图,起中最高的 株树苗高度的茎叶图如图所示,以这 株树苗的高度的频率估计整批树苗高度的概率.

(1)求这批树苗的高度高于 米的概率,并求图19-1中, 的值;

(2)若从这批树苗中随机选取 株,记 为高度在 的树苗数列,求 的分布列和数学期望.

(3)若变量 满足,则称变量 满足近似于正态分布 的概率分布.如果这批树苗的高度满足近似于正态分布 的概率分布,则认为这批树苗是合格的,将顺利获得签收;否则,公司将拒绝签收.试问,该批树苗能否被签收?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若 在区间 上是单调函数,求实数的取值范围.

(2)求函数在上的最大值和最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数);以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的普通方程与曲线的直角坐标方程;

(Ⅱ)若把曲线各点的横坐标伸长到原来的倍,纵坐标变为原来的,得到曲线,求曲线的方程;

(Ⅲ)设为曲线上的动点,求点到曲线上点的距离的最小值,并求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|2≤x≤5}B{x|m1≤x≤2m1}

(1)A∪BA,求实数m的取值范围;

(2)x∈Z时,求A的非空真子集的个数;

(3)x∈R时,若A∩B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,a≠1,设p:函数y=loga(x+3)在(0,+∞)上单调递减,q:函数yx2+(2a-3)x+1的图像与x轴交于不同的两点.如果pq真,pq假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

判断的奇偶性.

写出的单调区间(只需写出结果).

若方程有解,求实数的取值范围.

查看答案和解析>>

同步练习册答案