精英家教网 > 高中数学 > 题目详情

若数列{an}满足:对任意的n∈N,只有有限个正整数m使得am<n成立,记这样的m的个数为(an+,则得到一个新数列{(an+}.例如,若数列{an}是1,2,3…,n,…,则数列{(an+}是0,1,2,…,n-1…已知对任意的n∈N+,an=n2,则(a5+=________,((an++=________.

2    n2
分析:根据题意,若am<5,而an=n2,知m=1,2,∴(a5+=2,由题设条件可知((a1++=1,((a2++=4,((a3++=9,((a4++=16,于是猜想:((an++=n2
解答:∵am<5,而an=n2,∴m=1,2,∴(a5+=2.
∵(a1+=0,(a2+=1,(a3+=1,(a4+=1,
(a5+=2,(a6+=2,(a7+=2,(a8+=2,(a9+=2,
(a10+=3,(a11+=3,(a12+=3,(a13+=3,(a14+=3,(a15+=3,(a16+=3,
∴((a1++=1,((a2++=4,((a3++=9,((a4++=16,
猜想:((an++=n2
答案:2,n2
点评:本题考查数列的性质和应用,解题时要认真审题.仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{an}满足a1=1,an+1=2an+n,则通项an=
3×2n-1-n-1
3×2n-1-n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设m>3,对于数列{an} (n=1,2,…,m,…),令bk为a1,a2,…,ak中的最大值,称数列 {bn} 为{an} 的“递进上限数列”.例如数列2,1,3,7,5的递进上限数列为2,2,3,7,7.则下面命题中
①若数列{an} 满足an+3=an,则数列{an} 的递进上限数列必是常数列;
②等差数列{an} 的递进上限数列一定仍是等差数列
③等比数列{an} 的递进上限数列一定仍是等比数列
正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)若数列{an}满足an+12-
a
2
n
=d
(d为正常数,n∈N+),则称{an}为“等方差数列”.甲:数列{an}为等方差数列;乙:数列{an}为等差数列,则甲是乙的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•潍坊二模)已知函数f(x)=ax-
ln(1+x)
1+x
在x=0处取得极值.
(I)求实数a的值,并判断,f(x)在[0,+∞)上的单调性;
(Ⅱ)若数列{an}满足a1=1,an+1=f(an),求证:0<an+1<an≤l;
(Ⅲ)在(II)的条件.下,记sn=
a1
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)
,求证:sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x+1
,若数列{an}满足:an>0,a1=1,an+1=[f(
an
)]2
(I)求数列{an}的通项公式数列an
(II)若数列{an}的前n项和为Sn,证明:Sn<2.

查看答案和解析>>

同步练习册答案