精英家教网 > 高中数学 > 题目详情

【题目】如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是

【答案】
【解析】解:如图,M是AC的中点.①当AD=t<AM= 时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,
DM= ﹣t,由△ADE∽△BDM,可得 ,∴h= ,V= = ,t∈(0, )②当AD=t>AM= 时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,

DM=t﹣ ,由等面积,可得 ,∴ ,∴h= ,∴V= = ,t∈( ,2 )综上所述,V= ,t∈(0,2 )令m= ∈[1,2),则V= ,∴m=1时,Vmax= .所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,判断的单调性,并用定义证明;

(2)若恒成立,求的取值范围;

(3)讨论的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,且 的最小值为t.
(1)求实数t的值;
(2)解关于x的不等式:|2x+1|+|2x﹣1|<t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解男性家长和女性家长对高中学生成人礼仪式的接受程度,某中学团委以问卷形式调查了位家长,得到如下统计表:

男性家长

女性家长

合计

赞成

无所谓

合计

1)据此样本,能否有的把握认为接受程度与家长性别有关?说明理由;

2)学校决定从男性家长中按分层抽样方法选出人参加今年的高中学生成人礼仪式,并从中选人交流发言,求发言人中至多一人持赞成态度的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1证明 不可能成等差数列

2证明: 不可能为同一等差数列中的三项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x|x-a|+bxabR).

(Ⅰ)当b=-1时,函数fx)恰有两个不同的零点,求实数a的值;

(Ⅱ)当b=1时,

①若对于任意x∈[1,3],恒有fx)≤2x2,求a的取值范围;

②若a≥2,求函数fx)在区间[0,2]上的最大值ga).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求该函数的值域;

(2)求不等式的解集;

(3)若对于恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知点为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案