精英家教网 > 高中数学 > 题目详情

【题目】如图,点,,,分别为椭圆: 的左、右顶点,下顶点和右焦点,直线过点,与椭圆交于点已知当直线轴时,.

(1)求椭圆的离心率;

(2)若当点重合时,点到椭圆的右准线的距离为上.

①求椭圆的方程;

②求面积的最大值.

【答案】(1)(2)①

【解析】分析:(1)先求当直线轴时,,再根据条件得,最后由解得离心率,(2)设直线,联立直线方程与椭圆方程,利用韦达定理化简,即得

,利用基本不等式求最值,最后考虑特殊情形下三角形面积的值.

详解:解:(1)在中,令

可得,所以

所以当直线轴时,

,所以

所以,所以

(2)① 因为,所以

椭圆方程为

当点与点重合时,点坐标为

,所以此时直线

,所以

所以椭圆方程为

② 设直线

恒成立

所以

,则

易知函数上单调递增

所以当时,

的面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为( )
A.﹣1
B.﹣2e﹣3
C.5e﹣3
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},则方程f(x)﹣lgx=0的解的个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是一个算法流程图,当输入的x=5时,那么运行算法流程图输出的结果是(
A.10
B.20
C.25
D.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在R上的函数,对R都有,且当0时,<0,=1.

(1)求的值

(2)求证:为奇函数;

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人数学成绩的茎叶图如图所示:

(1)求出这两名同学的数学成绩的平均数、标准差.

(2)比较两名同学的成绩,谈谈你的看法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的极值点.

)设函数,其中,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为二次函数,且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)当x∈[t,t+2],t∈R时,求函数f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:

单价(千元)

销量(百件)

已知.

1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程

2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.

(参考公式:线性回归方程中的估计值分别为

查看答案和解析>>

同步练习册答案