分析 (I)利用二倍角公式及两角和的正弦函数公式化简已知可得f(x)=$2sin(x+\frac{π}{6})+1$,由周期公式即可得解.
(II)由$2kπ+\frac{π}{2}≤x+\frac{π}{6}≤2kπ+\frac{3π}{2}$,k∈Z,即可解得函数f(x)的单调递减区间.
解答 (本小题满分13分)
解:(I)由已知可得:$f(x)=\sqrt{3}sinx+cosx+1$=$2sin(x+\frac{π}{6})+1$.
所以f(x)的最小正周期为2π.…(7分)
(II)由$2kπ+\frac{π}{2}≤x+\frac{π}{6}≤2kπ+\frac{3π}{2}$,k∈Z,
得$2kπ+\frac{π}{3}≤x≤2kπ+\frac{4π}{3}$,k∈Z.
因此函数f(x)的单调递减区间为$[2kπ+\frac{π}{3},2kπ+\frac{4π}{3}]$,k∈Z.…(13分)
点评 本题主要考查了三角函数恒等变换的应用,考查了三角函数周期公式,正弦函数的图象和性质,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
商店名称 | A | B | C | D | E |
销售额(x)/千万元 | 3 | 5 | 6 | 7 | 9 |
利润(y)/百万元 | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,2) | B. | (2,+∞) | C. | (2,4) | D. | (4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|x≥1} | B. | {x|1≤x<2} | C. | {x|0<x≤1} | D. | {x|x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com