精英家教网 > 高中数学 > 题目详情

【题目】

已知等差数列的公差为,前项和为,且

1)求数列的通项公式与前项和

2)将数列的前四项抽取其中一项后,剩下三项按原来顺序恰为等比数列的前三项,记数列的前项和为,若存在,使得对任意,总有成立,求实数的取值范围.

【答案】12

【解析】

试题(1)求等差数列通项公式,一般利用待定系数法,本题已知公差,因此只需确定一项即可:由利用等差数列性质得,再根据等差数列广义通项公式得:,最后利用等差数列和项公式求前项和,(2)先根据题意确定数列的前四项抽取的是哪一项,再根据剩下三项,利用待定系数法求等比数列通项,然后利用错位相减法求数列的前项和为,对存在性问题及恒成立问题,一般转化为对应函数最值问题:为二次函数,可根据对称轴求其最大值,需注意,而的最值,需根据数列单调性确定.

试题解析:

解:(1为等差数列,且,即

公差

2)由(1)知数列的前项为

等比数列的前项为

,且

时,

时,

存在,使得对任意,总有成立.

实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试结果如下:

等级

优(86100分)

良(7585分)

中(6074分)

不及格(159分)

人数

5

21

22

2

1)估计该班学生体育测试的平均成绩;

2)从该班任意抽取1名学生,求这名学生的测试成绩为“优”或“良”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜加工厂加工一种蔬菜,并对该蔬菜产品进行质量评级,现对甲、乙两台机器所加工的蔬菜产品随机抽取一部分进行评级,结果(单位:件)如表1

1)若规定等级为合格等级,等级为优良等级,能否有的把握认为“蔬菜产品加工质量与机器有关”?

2)表2是用清水千克清洗该蔬菜千克后,该蔬菜上残留的农药微克的统计表,若用解析式作为的回归方程,求出的回归方程.(结果精确到)(参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,已知函数.

(Ⅰ)设,求上的最大值.

(Ⅱ)设,若的极大值恒小于0,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察某种疫苗预防疾病的效果,进行动物试验,得到统计数据如下:现从所有试验动物中任取一只,取到注射疫苗动物的概率为.

未发病

发病

总计

未注射疫苗

20

x

A

注射疫苗

40

y

B

总计

60

40

100

1)求2×2列联表中的数据xyAB的值.

2)能否在犯错误的概率不超过0.01的前提下认为疫苗有效?

附:

临界值表:

P(K2k0)

0.05

0.01

0.005

0.001

k0

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了丰富学生的课外文体活动,分别开设了阅读、书法、绘画等文化活动;跑步、游泳、健身操等体育活动.该中学共有高一学生300名,要求每位学生必须选择参加其中一项活动,现对高一学生的性别、学习积极性及选择参加的文体活动情况进行统计,得到数据如下:

(1)在选择参加体育活动的学生中按性别分层抽取6名,再从这6名学生中抽取2人了解家庭情况,求2人中至少有1名女生的概率;

(2)是否有99.9%的把握认为学生的学习积极性与选择参加文化活动有关?请说明你的理由.

附:参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P—ABCD是正四棱锥,是正方体,其中

1)求证:

2)求平面PAD与平面所成的锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线l的极坐标方程为,曲线C的参数方程为(为参数).

若曲线上存在MN两点关于直线l对称,求实数m的值;

若直线与曲线相交于PQ两点,且,求实数m的取值范围.

查看答案和解析>>

同步练习册答案