精英家教网 > 高中数学 > 题目详情
我国齐梁时代的数学家祖暅(公元前5-6世纪)提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得的两个截面的面积总是相等,那么这两个几何体的体积相等.
设:由曲线x2=4y和直线x=4,y=0所围成的平面图形,绕y轴旋转一周所得到的旋转体为Γ1;由同时满足x≥0,x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)构成的平面图形,绕y轴旋转一周所得到的旋转体为Γ2.根据祖暅原理等知识,通过考察Γ2可以得到Γ1的体积为(  )
A、16πB、32π
C、64πD、128π
考点:旋转体(圆柱、圆锥、圆台)
专题:阅读型,圆锥曲线的定义、性质与方程
分析:由题意可得旋转体夹在两相距为8的平行平面之间,用任意一个与y轴垂直的平面截这两个旋转体,设截面与原点距离为|y|,求出所得截面的面积相等,利用祖暅原理知,两个几何体体积相等.
解答:解:如图,两图形绕y轴旋转所得的旋转体夹在两相距为8的平行平面之间,

用任意一个与y轴垂直的平面截这两个旋转体,设截面与原点距离为|y|,所得截面面积 S1=π(42-4|y|),
S2=π(42-y2)-π[4-(2-|y|)2]=π(42-4|y|)
∴S1=S2,由祖暅原理知,两个几何体体积相等,
∵Γ2=
1
2
×
3
×(83-23-23)=
3
×(48)=32π,
∴Γ1=32π
故选:B
点评:本题主要考查祖暅原理的应用,求旋转体的体积的方法,体现了等价转化、数形结合的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=2x2-lnx在其定义域的一个子区间(k-1,k+1)内存在最小值,则实数k的取值范围是(  )
A、[1,+∞)
B、[1,
3
2
C、[1,2)
D、[
3
2
,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,
AB
=(2,4),
AC
=(1,3),则
AD
等于(  )
A、(1,1)
B、(-1,-1)
C、(1,-1)
D、(3,7)

查看答案和解析>>

科目:高中数学 来源: 题型:

计算(
5
5
)
4
3
等于(  )
A、5
B、
5
C、5
3
2
D、5
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

对两个变量y与x进行回归分析,分别选择不同的模型,它们的相关系数r如下,其中拟合效果最好的模型是(  )
A、0.2B、0.8
C、-0.98D、-0.7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是(  )
A、a>1,c>1
B、a>1,0<c<1
C、0<a<1,c>1
D、0<a<1,0<c<1

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(2,-2,-2),
b
=(2,-2,4),则sin<
a
b
>等于(  )
A、
210
15
B、
69
85
C、
4
85
85
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=
3
x的倾斜角是(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB的中点M到原点的距离的最小值为(  )
A、3
2
B、2
2
C、3
3
D、4
2

查看答案和解析>>

同步练习册答案