精英家教网 > 高中数学 > 题目详情

【题目】2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查, 经统计“青少年”与“中老年”的人数之比为9:11

关注

不关注

合计

青少年

15

中老年

合计

50

50

100

(1)根据已知条件完成上面的列联表,并判断能否有的把握认为关注“一带一路”是否和年龄段有关?

(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.

附:参考公式,其中

临界值表:

0.05

0.010

0.001

3.841

6.635

10.828

【答案】(1) 有的把握认为关注“一带一路” 和年龄段有关(2)

【解析】试题分析:(1)依题意完成列联表,计算,对照临界值得出结论(2)根据分层抽样法,得出随机变量的可能取值,计算对应的概率值,写出的分布列,计算出数学期望值.

试题解析:(1)依题意可知,抽取的青少年共有,“中老年共有.

完成的2×2列联表如:

关注

不关注

合计

青少年

15

30

45

中老年

35

20

55

合计

50

50

100

因为 ,所以有的把握认为关注一带一路和年龄段有关

(2)根据题意知,选出关注的人数为3,不关注的人数为6,在这9人中再选取3人进行面对面询问, 的取值可以为0,1,2,3,

, , , .

0

1

2

3

所以的分布列为数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某植物园准备建一个五边形区域的盆栽馆,三角形ABE为盆裁展示区,沿AB、AE修建观赏长廊,四边形BCDE是盆栽养护区,若BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=米。

(1)求两区域边界BE的长度;

(2)若区域ABE为锐角三角形,求观赏长廊总长度AB+AE的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是(  )
A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5
C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5
D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,已知处有相同的切线.

(1)求 的解析式;

(2)求上的最小值;

(3)若对 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P-ABCD的底面ABCD是平行四边形,PA⊥平面ABCDMAD的中点,NPC的中点.

1)求证:MN∥平面PAB

2)若平面PMC⊥平面PAD,求证:CMAD

3)若平面ABCD是矩形,PA=AB,求证:平面PMC⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地拟在一个U形水面PABQ(∠A=B=90°)上修一条堤坝(EAP上,NBQ上),围出一个封闭区域EABN,用以种植水生植物.为了美观起见,决定从AB上点M处分别向点EN2条分隔线MEMN,将所围区域分成3个部分(如图),每部分种植不同的水生植物.已知AB=aEM=BM,∠MEN=90°,设所拉分隔线总长度为l

1)设∠AME=2θ,求用θ表示的l函数表达式,并写出定义域;

2)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的三个内角A,B,C所对的边分别为a,b,c.已知sin
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆 ,且).

(1)设为坐标轴上的点,满足:过点P分别作圆与圆的一条切线,切点分别为,使得,试求出所有满足条件的点的坐标;

(2)若斜率为正数的直线平分圆,求证:直线与圆总相交.

查看答案和解析>>

同步练习册答案