精英家教网 > 高中数学 > 题目详情
斜三棱柱ABC-A1B1C1,已知侧面BB1C1C与底面ABC垂直且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A-B1B-C为30°
(1)求AB1与平面BB1C1C所成角的正切值;
(2)在平面AA1B1B内找一点P,使三棱锥P-BB1C为正三棱锥,并求P到平面BB1C距离.
分析:(1)由侧面BB1C1C与底面ABC垂直且∠BCA=90°知AC⊥平面BB1C1C,则有∠AB1C为AB1与平面BB1C1C所成的角,连接B1C,则∠AB1C为AB1与平面BB1C1C所成的角,在Rt△ACB1中可求得tan∠∠AB1C.
(2)在AD上取点P,使AP=2PD,则P点为所求,在CD上取点O,使CO=2OD,连PO,则易知三棱锥P-BB1C为正三棱锥,故可求.
解答:解:(1)由侧面BB1C1C与底面ABC垂直且∠BCA=90°知AC⊥平面BB1C1C
取BB1的中点D,AC⊥平面BB1C1C
∴AC⊥BB1
∴BB1⊥平面ADC
∴AD⊥BB1
∴∠CDA为二面角A-BB1-C的平面角,∴∠CDA=30°,
∵CD=
3
,∴AC=1
连接B1C,则∠AB1C为AB1与平面BB1C1C所成的角,
在Rt△ACB1中tan∠AB1C=
AC
B1C
=
1
2

(2)在AD上取点P,使AP=2PD,则P点为所求,
在CD上取点O,使CO=2OD,连PO,,
则PO∥AC,且PO=
1
3
AC

∵AO⊥平面BB1C,
∴PO⊥平面BB1C 且 BB1C为等边三角形,
∴三棱锥P-BB1C为正三棱锥,
且P到平面BB1C的距离为PO,PO=
1
3
AC=
1
3
点评:本题以斜三棱柱为载体,考查线面角,考查点面距离,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1
(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求CC1到平面A1AB的距离;
(Ⅲ)求二面角A-A1B-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,斜三棱柱ABC-A1B1C1的侧面AA1C1C是面积为
3
2
的菱形,∠ACC1为锐角,侧面ABB1A1⊥侧面AA1C1C,且A1B=AB=AC=1.
(Ⅰ)求证:AA1⊥BC1
(Ⅱ)求三棱锥A1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,且BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求多面体B1C1ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)在斜三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,又顶点A1在底面ABC上的射影落在AC上,侧棱AA1与底面ABC成60°角,D为AC的中点.
(1)求证:BD⊥AA1
(2)如果二面角A1-BD-C1为直二面角,试求侧棱CC1与侧面A1ABB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,E为AB的中点,BA1⊥AC1
(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求二面角B-A1E-C余弦值的大小.

查看答案和解析>>

同步练习册答案