精英家教网 > 高中数学 > 题目详情
如图所示,已知矩形ABCD所在平面,M、N分别是AB、PC的中点。

(1)求证:平面PAD;
(2)求证:

(1)证明略
(2)证明略
(1)取PD的中点E,连接AE、EN,则由于EN与AM平行且相等,
故AMNE为平行四边形,所以MN//AE

因为平面PAD,平面PAD,所以MN//平面PAD
(2)因为矩形ABCD所在平面,所以
,所以平面PAD
所以,即。又CD//AB,
所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知正四棱锥底面正方形的边长为4cm,高PO与斜高PE的夹角为,如图,求正四棱锥的表面积与体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


设地球是半径为R的球,地球上A、B两地都在北纬45°的纬线上,A在东经20°、B在东经110°的经线上,则A、B两地的球面距离是 (     )
A.      B.      C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥中,底面.底面为梯形,
.,点在棱上,且
(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角
(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在棱长为1的正方体ABCD-A1B1C1D1中.

(1)求证:AC⊥平面B1BDD1
(2)求三棱锥B-ACB1体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,动点P在正方体ABCD—A1B1C1D1的对角线BD1上,过点P作垂直于平面BB1D1D的直线,与正方体表面交于M、N,设BP=x,MN=y,则函数的图象大致是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)
如图,在六面体中,四边形ABCD是边长为2的正方形,四边形是边长为1的正方形,平面,平面ABCD,DD1=2。

(1)求证:与AC共面,与BD共面.   
(2)求证:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12)如图,四棱锥的底面为正方形,
平面,,,分别为,
的中点.   (1)求证平面.(2)求异面直线所成角的正切值.

查看答案和解析>>

同步练习册答案