精英家教网 > 高中数学 > 题目详情
设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1)记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若|S|,|T|分别为集合S,T的元素个数,则下列结论不可能的是(  )
分析:根据已知可得S的元素即为f(x)=(x+a)(x2+bx+c)=0根的个数,T的元素即为g(x)=(ax+1)(cx2+bx+1)=0根的个数,结合类一次方程根的个数与一次项系数的关系和二次方程根的个数与△的关系分类讨论后,可得答案.
解答:解:∵f(x)=(x+a)(x2+bx+c),S={x|f(x)=0,x∈R},
g(x)=(ax+1)(cx2+bx+1),T={x|g(x)=0,x∈R}.
当a=0,b2-4c<0,|S|=1,|T|=0;故A可能
当a≠0,b2-4c<0,|S|=1,|T|=1;故B可能
当a=0,b2-4c=0,|S|=2,|T|=1;
当a≠0,b2-4c=0,|S|=2,|T|=2;故C可能
当a=0,b2-4c>0,|S|=3,|T|=2;
当a≠0,b2-4c>0,|S|=3,|T|=3;
综上,只有D不可能发生,
故选D
点评:本题考查的知识点是分类讨论思想,方程的根及根的个数判断,熟练掌握类一次方程根的个数与一次项系数的关系和二次方程根的个数与△的关系是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分别为集合S,T 的元素个数,则下列结论不可能的是(  )
A、{S}=1且{T}=0B、{S}=1且{T}=1C、{S}=2且{T}=2D、{S}=2且{T}=3

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c为实数,4a-2b+c>0,a+b+c<0,则下列四个结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c为实数,3a,4b,5c成等比数列,且
1
a
1
b
1
c
成等差数列.则
a
c
+
c
a
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S=|x|f(x)=0,x∈R|,T=|x|g(x)=0,x∈R|,若cardS,cardT分别为集合元素S,T的元素个数,则下列结论不可能的是(  )

查看答案和解析>>

同步练习册答案