精英家教网 > 高中数学 > 题目详情

【题目】根据以往的经验,某建筑工程施工期间的降水量(单位:)对工期的影响如下表:

降水量

工期延误天数

0

1

3

6

根据某气象站的资料,某调查小组抄录了该工程施工地某月前天的降水量的数据,绘制得到降水量的折线图,如下图所示.

(1)求这天的平均降水量;

(2)根据降水量的折线图,分别估计该工程施工延误天数的概率.

【答案】(1)433(2)见解析

【解析】试题分析:(1)根据平均数的计算公式即可求得这天的平均降水量;(2)的天数为的天数为的天数为的天数为,由此能求出该工程施工延误天数的频率.

试题解析:(1)这天的平均降水量为.

(2)的天数为

的频率为,故估计的概率为.

的天数为

的频率为,故估计的概率为.

的天数为

的频率为,故估计的概率为.

的天数为

的频率为,故估计的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】绝对值|x1|的几何意义是数轴上的点x与点1之间的距离,那么对于实数ab的几何意义即为点x与点a、点b的距离之和.

1)直接写出的最小值,并写出取到最小值时x满足的条件;

2)设a1a2≤…≤an是给定的n个实数,记S=.试猜想:若n为奇数,则当x      S取到最小值;若n为偶数,则当x      时,S取到最小值;(直接写出结果即可)

3)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线,C与l有且仅有一个公共点.

(Ⅰ)求a

(Ⅱ)O为极点,A,B为C上的两点,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为常数,函数,给出以下结论:

(1)若,则存在唯一零点

(2)若,则

(3)若有两个极值点,则

其中正确结论的个数是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校在九年级上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图),且规定计分规则如下表:

每分钟跳绳个数

得分

17

18

19

20

1)请估计学生的跳绳个数的众数和平均数(保留整数);

2)若从跳绳个数在两组中按分层抽样的方法抽取9人参加正式测试,并从中任意选取2人,求2人得分之和不大于34分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据以往的经验,某建筑工程施工期间的降水量(单位:)对工期的影响如下表:

降水量

工期延误天数

0

1

3

6

根据某气象站的资料,某调查小组抄录了该工程施工地某月前天的降水量的数据,绘制得到降水量的折线图,如下图所示.

(1)根据降水量的折线图,分别求该工程施工延误天数的频率;

(2)以(1)中的频率作为概率,求工期延误天数的分布列及数学期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在正方形中,的中点,点在线段上,且.若将 分别沿折起,使两点重合于点,如图2.

图1 图2

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论上的零点个数;

(2)当时,若存在,使,求实数的取值范围.(为自然对数的底数,其值为2.71828……)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是R上的奇函数,且x>0时,fx=x2-4x+3

求:(1fx)的解析式.

2)已知t0,求函数fx)在区间[tt+1]上的最小值.

查看答案和解析>>

同步练习册答案