20£®ÔÚÊýÁÐ{an}ÖУ¬SnΪ{an}µÄÇ°nÏîºÍ£¬a1=1ÇÒSn+n2=n£¨an+1£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Áîbn=$\frac{{a}_{n}+1}{2}$•3n-1£¬BnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇóBn£»
£¨3£©ÈôÊýÁÐ{cn}Âú×ãcn=$\frac{2{b}_{n}}{n}$+£¨-1£©nln$\frac{2{b}_{n}}{n}$£¬ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍCn£®

·ÖÎö £¨1£©ÀûÓõÝÍƹ«Ê½¼´¿ÉµÃ³ö£»
£¨2£©bn=$\frac{{a}_{n}+1}{2}$•3n-1=n•3n-1£®ÀûÓá°´íλÏà¼õ·¨¡±ÓëµÈ±ÈÊýÁеÄÇ°nÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£®
£¨3£©cn=$\frac{2{b}_{n}}{n}$+£¨-1£©nln$\frac{2{b}_{n}}{n}$=2•3n-1+£¨-1£©n[ln2+£¨n-1£©ln3]£¬¶Ôn·ÖÀàÌÖÂÛ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ßSn+n2=n£¨an+1£©£¬¡àµ±n¡Ý2ʱ£¬${S}_{n-1}+£¨n-1£©^{2}$=£¨n-1£©£¨an-1+1£©£®Ïà¼õ¿ÉµÃ£ºan+2n-1=nan-£¨n-1£©an-1+1£¬»¯Îª£ºan-an-1=2£®
¡àÊýÁÐ{an}ÊǵȲîÊýÁУ¬Ê×ÏîΪ1£¬¹«²îΪ2£¬
¡àan=1+2£¨n-1£©=2n-1£®
£¨2£©bn=$\frac{{a}_{n}+1}{2}$•3n-1=n•3n-1£®
¡àÊýÁÐ{bn}µÄÇ°nÏîºÍBn=1+2¡Á3+3¡Á32+¡­+n•3n-1£®
¡à3Bn=3+2¡Á32+3¡Á33+¡­+£¨n-1£©•3n-1+n•3n£¬
¡à-2Bn=1+3+32+¡­+3n-1-+n•3n=$\frac{{3}^{n}-1}{3-1}$-n•3n=$\frac{1-2n}{2}•{3}^{n}$-$\frac{1}{2}$£¬
¡àBn=$\frac{2n-1}{4}•{3}^{n}$+$\frac{1}{4}$£®
£¨3£©cn=$\frac{2{b}_{n}}{n}$+£¨-1£©nln$\frac{2{b}_{n}}{n}$=2•3n-1+£¨-1£©n[ln2+£¨n-1£©ln3]£¬
µ±nΪżÊýʱ£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍCn=$\frac{2¡Á£¨{3}^{n}-1£©}{3-1}$+0+ln3[£¨-0+1£©+£¨-2+3£©+¡­+£¨-n+1+n£©]
=3n-1+$\frac{n}{2}$ln3£®
µ±nΪÆæÊýʱ£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍCn=Cn-1+cn
=3n-1-1+$\frac{n-1}{2}ln3$+2•3n-1-[ln2+£¨n-1£©ln3]
=3n-1-$\frac{n-1}{2}ln3$-ln2£®
¡àCn=$\left\{\begin{array}{l}{{3}^{n}-1+\frac{n}{2}ln3£¬nΪżÊý}\\{{3}^{n}-1-\frac{n-1}{2}ln3-ln2£¬nΪÆæÊý}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼°ÆäÇ°nÏîºÍ¹«Ê½¡¢µÝÍƹØϵµÄÓ¦ÓᢷÖÀàÌÖÂÛ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®$\underset{lim}{n¡ú¡Þ}$£¨$\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$£©=$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁÐʽ×ÓÄܱíʾy¹ØÓÚxµÄº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®x+y=3B£®y2=2xC£®y=2x2-xD£®y2=2x2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍsn=n2-n£¬ÕýÏîµÈ±ÈÊýÁÐ{bn}ÖУ¬b1+b2=8£¬b3+b4=$\frac{8}{9}$
£¨I£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©Èôcn=an•bn+1£¬ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ÆË㣺
£¨1£©£¨$\root{3}{2}$¡Á$\sqrt{3}$£©6+£¨$\sqrt{2\sqrt{2}}$£©${\;}^{\frac{4}{3}}$-4¡Á£¨$\frac{16}{49}$£©${\;}^{-\frac{1}{2}}$-$\root{4}{2}$¡Á80.25-£¨-2005£©0
£¨2£©$\frac{£¨1-lo{g}_{6}3£©^{2}+lo{g}_{6}2•lo{g}_{6}18}{lo{g}_{6}4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈôÊýÁÐ{an}Âú×ãan+1=an+lg2£¬ÇÒa1=1£¬ÔòÆäͨÏʽΪ£¨¡¡¡¡£©
A£®an=1+£¨n-1£©lgnB£®an=1+lgnC£®an=1+£¨n-1£©lg2D£®an=1+nlg2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CËù¶ÔµÄ±ß³¤£¬ÏòÁ¿$\overrightarrow{m}$=£¨1£¬sinA+$\sqrt{3}$cosA£©£¬$\overrightarrow{n}$=£¨sinA£¬$\frac{3}{2}$£©£¬ÒÑÖª$\overrightarrow{m}$Óë$\overrightarrow{n}$¹²Ïߣ®
£¨1£©Çó½ÇAµÄ´óС£»
£¨2£©Èôb+c=$\frac{11}{2}$£¬ÇÒ¡÷ABCµÄÃæ»ýµÈÓÚ$\frac{3\sqrt{3}}{2}$£¬Çó$\frac{a+b+c}{sinA+sinB+sinC}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=tan£¨x-¦Ð£©sin£¨x+$\frac{3¦Ð}{2}$£©sin£¨x-3¦Ð£©+cos£¨x-$\frac{3¦Ð}{2}$£©+2£®
£¨I£©»¯¼òf£¨x£©£»
£¨¢ò£©Èô·½³Ìf£¨x£©=mÔÚx¡Ê[-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{2}$]ÉÏÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=$\frac{a}{{2}^{x-2}}$-2x-2£¨a¡Ù0£©£¬½«y=f£¨x£©µÄͼÏóÏò×óƽÒÆ2¸öµ¥Î»µÃµ½y=g£¨x£©µÄͼÏó£®
£¨1£©Çóº¯Êýy=g£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôy=h£¨x£©µÄͼÏóÓëy=g£¨x£©µÄͼÏó¹ØÓÚxÖá¶Ô³Æ£¬Çóº¯Êýy=h£¨x£©µÄ½âÎöʽ£¨Ö»ÐèҪд³ö½á¹û£¬²»ÐèÒªÖ¤Ã÷£©£»
£¨3£©ÉèF£¨x£©=f£¨x£©+$\frac{1}{a}$h£¨x£©£¬ÒÑÖªF£¨x£©µÄ×îСֵΪm£¬ÇÒm$£¾\sqrt{7}$£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸