精英家教网 > 高中数学 > 题目详情
16.化简:tanα(1-cot2α)+cotα(1-tan2α)=0.

分析 利用同角三角函数的基本关系式化简解析式,求解即可.

解答 解:tanα(1-cot2α)+cotα(1-tan2α)
=tanα(1-$\frac{1}{{tan}^{2}α}$)+$\frac{1}{tanα}$(1-tan2α)
=tanα-$\frac{1}{tanα}$+$\frac{1}{tanα}$-tanα
=0.
故答案为:0.

点评 本题考查三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,P是椭圆上的一点,且P到椭圆两焦点的距离之和为4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线l:y=x交椭圆于点D、E,求△PDE面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{AB}$2=0,则△ABC必定是(  )
A.锐角三角形B.以∠C为直角的Rt△C.钝角三角形D.以∠A为直角的Rt△

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知x∈[-$\frac{2π}{3}$,$\frac{π}{6}$],求函数f(x)=3cos2x+5sinx-4的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点P是圆O:x2+y2=1上的任意一点,定点A(4,0),B(s,0)(s≠4).
(1)若P是第一象限内的点,过点P作圆O的切线与x轴、y轴交于M、N两点.求|MN|的最小值;
(2)若存在常数t,使得|PA|=$\frac{1}{t}$|PB|恒成立,求s,t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是函数f(x)=x3+bx2+cx+d的大致图象,则x1+x2等于(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{12}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=tan(2x-bπ)的图象的一个对称中心为($\frac{π}{3}$,0),若|b|<$\frac{1}{2}$,求函数f(x)的周期及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.球的半径以2m/s的速度膨胀,则半径为4m时,体积对时间的变化率是128πcm3/s.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.执行程序框图,若输入的a,b,k分别为1,2,3,则输出的M=$\frac{15}{8}$.

查看答案和解析>>

同步练习册答案