精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=mx2mx-1.

(1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围;

(2)若对于x∈[1,3],f(x)<5-m恒成立,求实数m的取值范围.

【答案】(1)(-4,0].(2)

【解析】试题分析:(1)先根据二次项系数是否为零分类讨论,再结合二次函数图像确定不等式恒成立的条件,最后求解实数m的取值范围;(2)分类变量将不等式转化为对应函数最值问题: 的最小值,再根据二次函数求最值,即得实数m的取值范围.

试题解析:解:(1)由题意可得m=0或m=0或-4<m<0-4<m≤0.

m的取值范围是(-4,0].

(2)要使f(x)<-m+5在[1,3]上恒成立,即m2m-6<0在x∈[1,3]上恒成立.

g(x)=m2m-6,x∈[1,3].

m>0时,g(x)在[1,3]上是增函数,

所以g(x)maxg(3)7m-6<0,

所以m,则0<m

m=0时,-6<0恒成立;

m<0时,g(x)在[1,3]上是减函数,

所以g(x)maxg(1)m-6<0,

所以m<6,所以m<0.

综上所述:m的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校高三年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.

)完成下面的列联表;

不喜欢运动

喜欢运动

合计

女生

50

男生

合计

100

200

)在抽取的样本中,调查喜欢运动女生的运动时间,发现她们的运动时间介于30分钟到90分钟之间,右图是测量结果的频率分布直方图,若从区间段的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,点为点关于原点的对称点,点在抛物线上,则下列说法错误的是( )

A. 使得为等腰三角形的点有且仅有4个

B. 使得为直角三角形的点有且仅有4个

C. 使得的点有且仅有4个

D. 使得的点有且仅有4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式(其中.

1)当时,求不等式的解集;

2)若不等式在内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某购物网站对在7座城市的线下体验店的广告费指出(万元)和销售额(万元)的数据统计如下表:

城市

广告费支出

销售额

(Ⅰ)若用线性回归模型拟合关系,求关于的线性回归方程;

(Ⅱ)若用对数函数回归模型拟合的关系,可得回归方程,经计算对数函数回归模型的相关系数约为,请说明选择哪个回归模型更合适,并用此模型预测城市的广告费用支出万元时的销售额.

参考数据: .

参考公式: .

相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2018届高三·湖南十校联考)已知函数f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,则当y≥1时, 的取值范围是(  )

A. B.

C. [1,3-3] D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若,则的值域是______;若的值域是,则实数的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥 中, .

(1)证明:顶点在底面的射影在的平分线上;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河南安阳市高三一模如下图在平面直角坐标系直线与直线之间的阴影部分即为区域中动点的距离之积为1

)求点的轨迹的方程

)动直线穿过区域分别交直线两点若直线与轨迹有且只有一个公共点求证 的面积恒为定值

查看答案和解析>>

同步练习册答案