【题目】杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律.现把杨辉三角中的数从上到下,从左到右依次排列,得数列:.记作数列,若数列的前项和为,则___ .
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线:和曲线:,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.
(1)求曲线和曲线的直角坐标方程;
(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是________度,即________rad.如果大轮的转速为(转/分),小轮的半径为10.5cm,那么小轮周上一点每1s转过的弧长是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不等式.
(1)若时,不等式恒成立,求实数m的取值范围.
(2)若时不等式恒成立,求实数m的取值范围.
(3)若满足的一切m的值使不等式恒成立,求实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=( )
A. 2 B. ±2 C. 4 D. ±4
【答案】A
【解析】
由题意可得 q>1,且 an >0,由条件可得 a1a2…a13=4a1a2…a9,化简得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.
等比数列{an}是递增数列,其前n项的积为Tn(n∈N*),若T13=4T9 ,设公比为q,
则由题意可得 q>1,且 an >0.
∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.
又由等比数列的性质可得 a8a15=a10a13=a11a12,∴a8a15=2.
故选:A.
【点睛】
本题主要考查等比数列的定义和性质,求得 a10a11a12a13=4是解题的关键.
【题型】单选题
【结束】
10
【题目】若直线y=2x上存在点(x,y)满足约束条件,则实数m的最大值为
A. -1 B. 1 C. D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知n是一个三位正整数,若n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如135,256,345等)
现要从甲乙两名同学中,选出一个参加某市组织的数学竞赛,选取的规则如下:从由1,2,3,4,5,6组成的所有“三位递增数”中随机抽取1个数,且只抽取1次,若抽取的“三位递增数”是偶数,则甲参加数学竞赛;否则,乙参加数学竞赛.
(1)由1,2,3,4,5,6可组成多少“三位递增数”?并一一列举出来.
(2)这种选取规则对甲乙两名学生公平吗?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com