分析 (1)利用PC是圆O的切线,通过∠ACP=∠ABC,得到∠APC=∠BAC,求出∠BAC=90°,说明BC是圆O的直径.
(2)说明△APC∽△CAD,推出$\frac{AC}{CD}=\frac{AP}{AC}$,利用数据关系求解即可.
解答 (1)证明:∵PC是圆O的切线,∴∠ACP=∠ABC,
又∵∠ACB=∠APC,∴∠APC=∠BAC,
而∠PAC+∠BAC=180°,
∴∠BAC=90°,∴BC是圆O的直径.
(2)解:∵∠BPC=∠DAC,∠ACP=∠ADC,
∴△APC∽△CAD,∴$\frac{AC}{CD}=\frac{AP}{AC}$,∴AC2=PA•CD,①
又由切割线定理PC2=PA•PB,PC=4,AB=2$\sqrt{2}$,
得PA=2$\sqrt{2}$,②
由①②得CD=$\frac{\sqrt{2}}{2}$.
点评 本题考查直线与圆的位置关系的应用,考查逻辑推理能力以及三角形相似的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
A. | a2 | B. | loga2 | C. | 2 | D. | loga(loga2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com