精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1时,求不等式的解集;

2若关于x的不等式有实数解,求实数a的取值范围.

【答案】(Ⅰ)-3x-,(Ⅱ)a0a-4

【解析】

(Ⅰ)利用零点法,分类讨论,求出不等式的解集;

(Ⅱ)把不等式,变形为2|x+2|-x|x-a|,问题等价于函数y=2|x+2|-x的图象上存在点在函数y=|x-a|的图象下方,画出图象,利用数形结合,求出实数a的取值范围。

解:(Ⅰ)当a=1时,fx=2|x+1|-|x-1|

x-1时,由fx)<0-2x+1+x-1)<0,即-x-30,得x-3,此时-3x-1

-1≤x≤1,由fx)<02x+1+x-1)<0,即3x+10,得x-,此时-1≤x-

x1时,由fx)<02x+1-x-1)<0,即x+30,得x-3,此时无解,

综上-3x-

(Ⅱ)∵fx)<x2|x+2|-x|x-a|有解,等价于函数y=2|x+2|-x的图象上存在点在函数y=|x-a|的图象下方,

由函数y=2|x+2|-x与函数y=|x-a|的图象可知:a0a-4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线 y = x3 + x2 在点 P0 处的切线平行于直线

4xy1=0,且点 P0 在第三象限,

P0的坐标;

若直线, l 也过切点P0 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某自然资源探险组织试图穿越某峡谷,但峡谷内被某致命昆虫所侵扰,为了穿越这个峡谷,该探险组织进行了详细的调研,若每平方米的昆虫数量记为昆虫密度,调研发现,在这个峡谷中,昆虫密度是时间(单位:小时)的一个连续不间断的函数其函数表达式为

其中时间是午夜零点后的小时数,为常数.

1)求的值;

2)求出昆虫密度的最小值和出现最小值的时间

3)若昆虫密度不超过1250/平方米,则昆虫的侵扰是非致命性的,那么在一天24小时内哪些时间段,峡谷内昆虫出现非致命性的侵扰.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“整治散落污染企业”等.下表是该市2016年11月份和2017年11月份的空气质量指数()(指数越小,空气质量越好)统计表.根据表中数据回答下列问题:

(1)将2017年11月的空气质量指数数据用该天的对应日期作为样本编号,再用系统抽样方法从中抽取6个数据,若在2017年11月16日到11月20日这五天中用简单随机抽样抽取到的样本的编号是19号,写出抽出的样本数据;

(2)从(1)中抽出的6个样本数据中随机抽取2个,求这2个数据之差的绝对值小于30的概率;

(3)根据《环境空气质量指数()技术规定(试行)》规定:当空气质量指数为(含50)时,空气质量级别为一级,求出这两年11月空气质量指数为一级的概率,你认为该市2017年初开始采取的这些大气污染治理措施是否有效?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求出函数的定义域;

2)若当时,上恒正,求出的取值范围;

3)若函数上单调递增,求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的直角顶点轴上,点为斜边的中点,且平行于轴.

(1)求点的轨迹方程;

(2)设点的轨迹为曲线,直线的另一个交点为.以为直径的圆交轴于,记此圆的圆心为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)当时,讨论的单调性;

(2)当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥MO分别为CDAC的中点,平面ABCD

求证:平面平面PAC

是否存在线段PM上一点N,使得平面PAB,若存在,求的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖.

(1)求顾客抽奖1次能获奖的概率;

(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中或一等奖的次数为,求的分布列、数学期望和方差.

查看答案和解析>>

同步练习册答案