【题目】已知椭圆的两个焦点分别为,长轴长为.
(Ⅰ)求椭圆的标准方程及离心率;
(Ⅱ)过点的直线与椭圆交于,两点,若点满足,求证:由点 构成的曲线关于直线对称.
【答案】(Ⅰ),离心率;(Ⅱ)见解析
【解析】
(Ⅰ)由已知,得a,c=1,所以,由 ,所以b,即可求出椭圆方程及离心率;(Ⅱ)设A(x1,y1),B(x2,y2),,分两种情况,借助韦达定理和向量的运算,求出点M构成的曲线L的方程为2x2+3y2﹣2y=0,即可证明。
(Ⅰ)由已知,得,所以,
又,所以
所以椭圆的标准方程为,离心率.
(Ⅱ)设,, ,
①直线 与轴垂直时,点的坐标分别为,.
因为,,,
所以.
所以,即点与原点重合;
②当直线与轴不垂直时,设直线的方程为,
由
得,.
所以.
则,
因为,,,
所以.
所以,.,,
消去得.
综上,点构成的曲线的方程为
对于曲线的任意一点,它关于直线的对称点为.
把的坐标代入曲线的方程的左端:.
所以点也在曲线上.
所以由点构成的曲线关于直线对称.
科目:高中数学 来源: 题型:
【题目】如图所示的“8”字形曲线是由两个关于轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是,双曲线的左、右顶点、是该圆与轴的交点,双曲线与半圆相交于与轴平行的直径的两端点.
(1)试求双曲线的标准方程;
(2)记双曲线的左、右焦点为、,试在“8”字形曲线上求点,使得是直角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的离心率为,设直线过椭圆的上顶点和右顶点,坐标原点到直线的距离为.
(1)求椭圆的方程.
(2)过点且斜率不为零的直线交椭圆于,两点,在轴的正半轴上是否存在定点,使得直线,的斜率之积为非零的常数?若存在,求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B,C是抛物线W:y2=4x上的三个点,D是x轴上一点.
(1)当点B是W的顶点,且四边形ABCD为正方形时,求此正方形的面积;
(2)当点B不是W的顶点时,判断四边形ABCD是否可能为正方形,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校工会开展健步走活动,要求教职工上传3月1日至3月7日微信记步数信息,下图是职工甲和职工乙微信记步数情况:
(Ⅰ)从3月1日至3月7日中任选一天,求这一天职工甲和职工乙微信记步数都不低于10000的概率;
(Ⅱ)从3月1日至3月7日中任选两天,记职工乙在这两天中微信记步数不低于10000的天数为,求 的分布列及数学期望;
(Ⅲ)如图是校工会根据3月1日至3月7日某一天的数据,制作的全校200名教职工微信记步数的频率分布直方图.已知这一天甲和乙微信记步数在单位200名教职工中排名分别为第68和第142,请指出这是根据哪一天的数据制作的频率分布直方图(不用说明理由).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是等差数列,,且,,成等比数列.
(1)求的通项公式;
(2)求的前项和的最小值;
(3)若是等差数列,与的公差不相等,且,问:和中除第5项外,还有序号相同且数值相等的项吗?(直接写出结论即可)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为20米,圆O的半径为1米,圆心足正方形的中心,点P、Q分别在线段AD、CB上,若线段PQ与圆O有公共点,则称点Q在点P的“盲区”中. 已知点P以1.5米/秒的速度从A出发向D移动,同时,点Q以1米/秒的速度从C出发向B移动,则点P从A移动到D的过程中,点Q在点P的育区中的时长约为________秒(精确到0.1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 的两条渐近线与抛物线的准线分别交于,两点.若双曲线的离心率为,的面积为,为坐标原点,则抛物线的焦点坐标为 ( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com