【题目】某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少时间?
【答案】
(1)解:由表中数据得: xiyi=52.5, =3.5, =3.5, xi2=54.
∴b= =0.7
故a=3.5﹣0.7×3.5=1.05,
∴所求线性回归方程为:y=0.7x+1.05
(2)解:将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时).
∴试预测加工10个零件需要8.05个小时
【解析】(1)根据表中所给的数据,做出横标和纵标的平均数,得到样本中心点,求出对应的横标和纵标的积的和,求出横标的平方和,做出系数和a的值,写出线性回归方程.(2)将x=10代入回归直线方程,得y=0.7×10+1.05=8.05.试预测加工10个零件需要8.05个小时,这是一个预报值.
科目:高中数学 来源: 题型:
【题目】已知指数函数y=ax(a>0,且a≠1)的图象过点(1, ).
(I)求函数y=f(x)的解析式;
II)若不等式满足f(2x+1)>1,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m、n、s、t∈R* , m+n=3, 其中m、n是常数且m<n,若s+t的最小值 是 ,满足条件的点(m,n)是椭圆 一弦的中点,则此弦所在的直线方程为( )
A.x﹣2y+3=0
B.4x﹣2y﹣3=0
C.x+y﹣3=0
D.2x+y﹣4=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各对直线不互相垂直的是( )
A.l1的倾斜角为120°,l2过点P(1,0),Q(4, )
B.l1的斜率为- ,l2过点P(1,1),Q
C.l1的倾斜角为30°,l2过点P(3, ),Q(4,2 )
D.l1过点M(1,0),N(4,-5),l2过点P(-6,0),Q(-1,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,一个矩形花园里需要铺两条笔直的小路,已知矩形花园长AD=5m,宽AB=3m,其中一条小路定为AC,另一条小路过点D,问如何在BC上找到一点M,使得两条小路AC与DM相互垂直?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若抛物线的顶点是双曲线x2﹣y2=1的中心,焦点是双曲线的右顶点
(1)求抛物线的标准方程;
(2)若直线l过点C(2,1)交抛物线于M,N两点,是否存在直线l,使得C恰为弦MN的中点?若存在,求出直线l方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com